Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem41 Structured version   Visualization version   GIF version

Theorem stoweidlem41 38934
Description: This lemma is used to prove that there exists x as in Lemma 1 of [BrosowskiDeutsh] p. 90: 0 <= x(t) <= 1 for all t in T, x(t) < epsilon for all t in V, x(t) > 1 - epsilon for all t in T \ U. Here we prove the very last step of the proof of Lemma 1: "The result follows from taking x = 1 - qn";. Here 𝐸 is used to represent ε in the paper, and 𝑦 to represent qn in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem41.1 𝑡𝜑
stoweidlem41.2 𝑋 = (𝑡𝑇 ↦ (1 − (𝑦𝑡)))
stoweidlem41.3 𝐹 = (𝑡𝑇 ↦ 1)
stoweidlem41.4 𝑉𝑇
stoweidlem41.5 (𝜑𝑦𝐴)
stoweidlem41.6 (𝜑𝑦:𝑇⟶ℝ)
stoweidlem41.7 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem41.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem41.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem41.10 ((𝜑𝑤 ∈ ℝ) → (𝑡𝑇𝑤) ∈ 𝐴)
stoweidlem41.11 (𝜑𝐸 ∈ ℝ+)
stoweidlem41.12 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1))
stoweidlem41.13 (𝜑 → ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡))
stoweidlem41.14 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸)
Assertion
Ref Expression
stoweidlem41 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑥𝑡)))
Distinct variable groups:   𝑓,𝑔,𝑡,𝑦   𝐴,𝑓,𝑔,𝑡   𝑓,𝐹,𝑔   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝑤,𝑡,𝐴   𝑥,𝑡,𝐴   𝑤,𝑇   𝜑,𝑤   𝑥,𝐸   𝑥,𝑇   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑡)   𝐴(𝑦)   𝑇(𝑦)   𝑈(𝑦,𝑤,𝑡,𝑓,𝑔)   𝐸(𝑦,𝑤,𝑡,𝑓,𝑔)   𝐹(𝑥,𝑦,𝑤,𝑡)   𝑉(𝑦,𝑤,𝑡,𝑓,𝑔)   𝑋(𝑦,𝑤,𝑡,𝑓,𝑔)

Proof of Theorem stoweidlem41
StepHypRef Expression
1 stoweidlem41.1 . . . . 5 𝑡𝜑
2 1re 9918 . . . . . . . 8 1 ∈ ℝ
3 stoweidlem41.3 . . . . . . . . 9 𝐹 = (𝑡𝑇 ↦ 1)
43fvmpt2 6200 . . . . . . . 8 ((𝑡𝑇 ∧ 1 ∈ ℝ) → (𝐹𝑡) = 1)
52, 4mpan2 703 . . . . . . 7 (𝑡𝑇 → (𝐹𝑡) = 1)
65adantl 481 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) = 1)
76oveq1d 6564 . . . . 5 ((𝜑𝑡𝑇) → ((𝐹𝑡) − (𝑦𝑡)) = (1 − (𝑦𝑡)))
81, 7mpteq2da 4671 . . . 4 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝑦𝑡))) = (𝑡𝑇 ↦ (1 − (𝑦𝑡))))
9 stoweidlem41.2 . . . 4 𝑋 = (𝑡𝑇 ↦ (1 − (𝑦𝑡)))
108, 9syl6eqr 2662 . . 3 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝑦𝑡))) = 𝑋)
11 stoweidlem41.10 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → (𝑡𝑇𝑤) ∈ 𝐴)
1211stoweidlem4 38897 . . . . . 6 ((𝜑 ∧ 1 ∈ ℝ) → (𝑡𝑇 ↦ 1) ∈ 𝐴)
132, 12mpan2 703 . . . . 5 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
143, 13syl5eqel 2692 . . . 4 (𝜑𝐹𝐴)
15 stoweidlem41.5 . . . 4 (𝜑𝑦𝐴)
16 nfmpt1 4675 . . . . . 6 𝑡(𝑡𝑇 ↦ 1)
173, 16nfcxfr 2749 . . . . 5 𝑡𝐹
18 nfcv 2751 . . . . 5 𝑡𝑦
19 stoweidlem41.7 . . . . 5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
20 stoweidlem41.8 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
21 stoweidlem41.9 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
2217, 18, 1, 19, 20, 21, 11stoweidlem33 38926 . . . 4 ((𝜑𝐹𝐴𝑦𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝑦𝑡))) ∈ 𝐴)
2314, 15, 22mpd3an23 1418 . . 3 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝑦𝑡))) ∈ 𝐴)
2410, 23eqeltrrd 2689 . 2 (𝜑𝑋𝐴)
25 stoweidlem41.6 . . . . . . . 8 (𝜑𝑦:𝑇⟶ℝ)
2625fnvinran 38196 . . . . . . 7 ((𝜑𝑡𝑇) → (𝑦𝑡) ∈ ℝ)
27 1red 9934 . . . . . . 7 ((𝜑𝑡𝑇) → 1 ∈ ℝ)
28 0red 9920 . . . . . . 7 ((𝜑𝑡𝑇) → 0 ∈ ℝ)
29 stoweidlem41.12 . . . . . . . . . 10 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1))
3029r19.21bi 2916 . . . . . . . . 9 ((𝜑𝑡𝑇) → (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1))
3130simprd 478 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝑦𝑡) ≤ 1)
32 1m0e1 11008 . . . . . . . 8 (1 − 0) = 1
3331, 32syl6breqr 4625 . . . . . . 7 ((𝜑𝑡𝑇) → (𝑦𝑡) ≤ (1 − 0))
3426, 27, 28, 33lesubd 10510 . . . . . 6 ((𝜑𝑡𝑇) → 0 ≤ (1 − (𝑦𝑡)))
35 simpr 476 . . . . . . 7 ((𝜑𝑡𝑇) → 𝑡𝑇)
3627, 26resubcld 10337 . . . . . . 7 ((𝜑𝑡𝑇) → (1 − (𝑦𝑡)) ∈ ℝ)
379fvmpt2 6200 . . . . . . 7 ((𝑡𝑇 ∧ (1 − (𝑦𝑡)) ∈ ℝ) → (𝑋𝑡) = (1 − (𝑦𝑡)))
3835, 36, 37syl2anc 691 . . . . . 6 ((𝜑𝑡𝑇) → (𝑋𝑡) = (1 − (𝑦𝑡)))
3934, 38breqtrrd 4611 . . . . 5 ((𝜑𝑡𝑇) → 0 ≤ (𝑋𝑡))
4030simpld 474 . . . . . . . 8 ((𝜑𝑡𝑇) → 0 ≤ (𝑦𝑡))
4128, 26, 27, 40lesub2dd 10523 . . . . . . 7 ((𝜑𝑡𝑇) → (1 − (𝑦𝑡)) ≤ (1 − 0))
4241, 32syl6breq 4624 . . . . . 6 ((𝜑𝑡𝑇) → (1 − (𝑦𝑡)) ≤ 1)
4338, 42eqbrtrd 4605 . . . . 5 ((𝜑𝑡𝑇) → (𝑋𝑡) ≤ 1)
4439, 43jca 553 . . . 4 ((𝜑𝑡𝑇) → (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1))
4544ex 449 . . 3 (𝜑 → (𝑡𝑇 → (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
461, 45ralrimi 2940 . 2 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1))
47 stoweidlem41.4 . . . . . . 7 𝑉𝑇
4847sseli 3564 . . . . . 6 (𝑡𝑉𝑡𝑇)
4948, 38sylan2 490 . . . . 5 ((𝜑𝑡𝑉) → (𝑋𝑡) = (1 − (𝑦𝑡)))
50 1red 9934 . . . . . 6 ((𝜑𝑡𝑉) → 1 ∈ ℝ)
51 stoweidlem41.11 . . . . . . . 8 (𝜑𝐸 ∈ ℝ+)
5251rpred 11748 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
5352adantr 480 . . . . . 6 ((𝜑𝑡𝑉) → 𝐸 ∈ ℝ)
5448, 26sylan2 490 . . . . . 6 ((𝜑𝑡𝑉) → (𝑦𝑡) ∈ ℝ)
55 stoweidlem41.13 . . . . . . 7 (𝜑 → ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡))
5655r19.21bi 2916 . . . . . 6 ((𝜑𝑡𝑉) → (1 − 𝐸) < (𝑦𝑡))
5750, 53, 54, 56ltsub23d 10511 . . . . 5 ((𝜑𝑡𝑉) → (1 − (𝑦𝑡)) < 𝐸)
5849, 57eqbrtrd 4605 . . . 4 ((𝜑𝑡𝑉) → (𝑋𝑡) < 𝐸)
5958ex 449 . . 3 (𝜑 → (𝑡𝑉 → (𝑋𝑡) < 𝐸))
601, 59ralrimi 2940 . 2 (𝜑 → ∀𝑡𝑉 (𝑋𝑡) < 𝐸)
61 eldifi 3694 . . . . . . 7 (𝑡 ∈ (𝑇𝑈) → 𝑡𝑇)
6261, 26sylan2 490 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑦𝑡) ∈ ℝ)
6352adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐸 ∈ ℝ)
64 1red 9934 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 1 ∈ ℝ)
65 stoweidlem41.14 . . . . . . 7 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸)
6665r19.21bi 2916 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑦𝑡) < 𝐸)
6762, 63, 64, 66ltsub2dd 10519 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → (1 − 𝐸) < (1 − (𝑦𝑡)))
6861, 38sylan2 490 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑋𝑡) = (1 − (𝑦𝑡)))
6967, 68breqtrrd 4611 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → (1 − 𝐸) < (𝑋𝑡))
7069ex 449 . . 3 (𝜑 → (𝑡 ∈ (𝑇𝑈) → (1 − 𝐸) < (𝑋𝑡)))
711, 70ralrimi 2940 . 2 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑋𝑡))
72 nfmpt1 4675 . . . . . . 7 𝑡(𝑡𝑇 ↦ (1 − (𝑦𝑡)))
739, 72nfcxfr 2749 . . . . . 6 𝑡𝑋
7473nfeq2 2766 . . . . 5 𝑡 𝑥 = 𝑋
75 fveq1 6102 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝑡) = (𝑋𝑡))
7675breq2d 4595 . . . . . 6 (𝑥 = 𝑋 → (0 ≤ (𝑥𝑡) ↔ 0 ≤ (𝑋𝑡)))
7775breq1d 4593 . . . . . 6 (𝑥 = 𝑋 → ((𝑥𝑡) ≤ 1 ↔ (𝑋𝑡) ≤ 1))
7876, 77anbi12d 743 . . . . 5 (𝑥 = 𝑋 → ((0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
7974, 78ralbid 2966 . . . 4 (𝑥 = 𝑋 → (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
8075breq1d 4593 . . . . 5 (𝑥 = 𝑋 → ((𝑥𝑡) < 𝐸 ↔ (𝑋𝑡) < 𝐸))
8174, 80ralbid 2966 . . . 4 (𝑥 = 𝑋 → (∀𝑡𝑉 (𝑥𝑡) < 𝐸 ↔ ∀𝑡𝑉 (𝑋𝑡) < 𝐸))
8275breq2d 4595 . . . . 5 (𝑥 = 𝑋 → ((1 − 𝐸) < (𝑥𝑡) ↔ (1 − 𝐸) < (𝑋𝑡)))
8374, 82ralbid 2966 . . . 4 (𝑥 = 𝑋 → (∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑥𝑡) ↔ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑋𝑡)))
8479, 81, 833anbi123d 1391 . . 3 (𝑥 = 𝑋 → ((∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑥𝑡)) ↔ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑋𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑋𝑡))))
8584rspcev 3282 . 2 ((𝑋𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑋𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑋𝑡))) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑥𝑡)))
8624, 46, 60, 71, 85syl13anc 1320 1 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑥𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wnf 1699  wcel 1977  wral 2896  wrex 2897  cdif 3537  wss 3540   class class class wbr 4583  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  +crp 11708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-rp 11709
This theorem is referenced by:  stoweidlem52  38945
  Copyright terms: Public domain W3C validator