Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem51 Structured version   Visualization version   GIF version

Theorem stoweidlem51 38944
Description: There exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. Here 𝐷 is used to represent 𝐴 in the paper, because here 𝐴 is used for the subalgebra of functions. 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem51.1 𝑖𝜑
stoweidlem51.2 𝑡𝜑
stoweidlem51.3 𝑤𝜑
stoweidlem51.4 𝑤𝑉
stoweidlem51.5 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem51.6 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
stoweidlem51.7 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
stoweidlem51.8 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
stoweidlem51.9 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
stoweidlem51.10 (𝜑𝑀 ∈ ℕ)
stoweidlem51.11 (𝜑𝑊:(1...𝑀)⟶𝑉)
stoweidlem51.12 (𝜑𝑈:(1...𝑀)⟶𝑌)
stoweidlem51.13 ((𝜑𝑤𝑉) → 𝑤𝑇)
stoweidlem51.14 (𝜑𝐷 ran 𝑊)
stoweidlem51.15 (𝜑𝐷𝑇)
stoweidlem51.16 (𝜑𝐵𝑇)
stoweidlem51.17 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑈𝑖)‘𝑡) < (𝐸 / 𝑀))
stoweidlem51.18 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
stoweidlem51.19 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem51.20 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem51.21 (𝜑𝑇 ∈ V)
stoweidlem51.22 (𝜑𝐸 ∈ ℝ+)
stoweidlem51.23 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem51 (𝜑 → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
Distinct variable groups:   𝑓,𝑔,,𝑡,𝐴   𝑓,𝑖,𝑀,,𝑡   𝑓,𝐹,𝑔   𝑇,𝑓,𝑔,,𝑡   𝑈,𝑓,𝑔,,𝑡   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔   𝑔,𝑀   𝑤,𝑖,𝑇   𝐵,𝑖   𝐷,𝑖   𝑖,𝐸   𝑈,𝑖   𝑖,𝑊,𝑤   𝑥,𝑡,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸   𝑥,𝑇   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑡,,𝑖)   𝐴(𝑤,𝑖)   𝐵(𝑤,𝑡,𝑓,𝑔,)   𝐷(𝑤,𝑡,𝑓,𝑔,)   𝑃(𝑥,𝑤,𝑡,𝑓,𝑔,,𝑖)   𝑈(𝑥,𝑤)   𝐸(𝑤,𝑡,𝑓,𝑔,)   𝐹(𝑥,𝑤,𝑡,,𝑖)   𝑀(𝑥,𝑤)   𝑉(𝑥,𝑤,𝑡,𝑓,𝑔,,𝑖)   𝑊(𝑥,𝑡,𝑓,𝑔,)   𝑋(𝑤,𝑡,𝑓,𝑔,,𝑖)   𝑌(𝑥,𝑤,𝑡,,𝑖)   𝑍(𝑥,𝑤,𝑡,𝑓,𝑔,,𝑖)

Proof of Theorem stoweidlem51
StepHypRef Expression
1 stoweidlem51.5 . . . 4 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
2 ssrab2 3650 . . . 4 {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ⊆ 𝐴
31, 2eqsstri 3598 . . 3 𝑌𝐴
4 stoweidlem51.6 . . . 4 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
5 stoweidlem51.7 . . . 4 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
6 1zzd 11285 . . . . . 6 (𝜑 → 1 ∈ ℤ)
7 stoweidlem51.10 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
87nnzd 11357 . . . . . 6 (𝜑𝑀 ∈ ℤ)
96, 8, 83jca 1235 . . . . 5 (𝜑 → (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ))
107nnge1d 10940 . . . . . 6 (𝜑 → 1 ≤ 𝑀)
117nnred 10912 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
1211leidd 10473 . . . . . 6 (𝜑𝑀𝑀)
1310, 12jca 553 . . . . 5 (𝜑 → (1 ≤ 𝑀𝑀𝑀))
14 elfz2 12204 . . . . 5 (𝑀 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (1 ≤ 𝑀𝑀𝑀)))
159, 13, 14sylanbrc 695 . . . 4 (𝜑𝑀 ∈ (1...𝑀))
16 stoweidlem51.12 . . . 4 (𝜑𝑈:(1...𝑀)⟶𝑌)
17 stoweidlem51.2 . . . . 5 𝑡𝜑
18 eqid 2610 . . . . 5 (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
19 stoweidlem51.20 . . . . 5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
20 stoweidlem51.19 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
2117, 1, 18, 19, 20stoweidlem16 38909 . . . 4 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
22 stoweidlem51.21 . . . 4 (𝜑𝑇 ∈ V)
234, 5, 15, 16, 21, 22fmulcl 38648 . . 3 (𝜑𝑋𝑌)
243, 23sseldi 3566 . 2 (𝜑𝑋𝐴)
251eleq2i 2680 . . . . . . 7 (𝑋𝑌𝑋 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)})
26 nfcv 2751 . . . . . . . . . . 11 1
27 nfrab1 3099 . . . . . . . . . . . . . 14 {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
281, 27nfcxfr 2749 . . . . . . . . . . . . 13 𝑌
29 nfcv 2751 . . . . . . . . . . . . 13 (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
3028, 28, 29nfmpt2 6622 . . . . . . . . . . . 12 (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
314, 30nfcxfr 2749 . . . . . . . . . . 11 𝑃
32 nfcv 2751 . . . . . . . . . . 11 𝑈
3326, 31, 32nfseq 12673 . . . . . . . . . 10 seq1(𝑃, 𝑈)
34 nfcv 2751 . . . . . . . . . 10 𝑀
3533, 34nffv 6110 . . . . . . . . 9 (seq1(𝑃, 𝑈)‘𝑀)
365, 35nfcxfr 2749 . . . . . . . 8 𝑋
37 nfcv 2751 . . . . . . . 8 𝐴
38 nfcv 2751 . . . . . . . . 9 𝑇
39 nfcv 2751 . . . . . . . . . . 11 0
40 nfcv 2751 . . . . . . . . . . 11
41 nfcv 2751 . . . . . . . . . . . 12 𝑡
4236, 41nffv 6110 . . . . . . . . . . 11 (𝑋𝑡)
4339, 40, 42nfbr 4629 . . . . . . . . . 10 0 ≤ (𝑋𝑡)
4442, 40, 26nfbr 4629 . . . . . . . . . 10 (𝑋𝑡) ≤ 1
4543, 44nfan 1816 . . . . . . . . 9 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)
4638, 45nfral 2929 . . . . . . . 8 𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)
47 nfcv 2751 . . . . . . . . . . . . 13 𝑡1
48 nfra1 2925 . . . . . . . . . . . . . . . . 17 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
49 nfcv 2751 . . . . . . . . . . . . . . . . 17 𝑡𝐴
5048, 49nfrab 3100 . . . . . . . . . . . . . . . 16 𝑡{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
511, 50nfcxfr 2749 . . . . . . . . . . . . . . 15 𝑡𝑌
52 nfmpt1 4675 . . . . . . . . . . . . . . 15 𝑡(𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
5351, 51, 52nfmpt2 6622 . . . . . . . . . . . . . 14 𝑡(𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
544, 53nfcxfr 2749 . . . . . . . . . . . . 13 𝑡𝑃
55 nfcv 2751 . . . . . . . . . . . . 13 𝑡𝑈
5647, 54, 55nfseq 12673 . . . . . . . . . . . 12 𝑡seq1(𝑃, 𝑈)
57 nfcv 2751 . . . . . . . . . . . 12 𝑡𝑀
5856, 57nffv 6110 . . . . . . . . . . 11 𝑡(seq1(𝑃, 𝑈)‘𝑀)
595, 58nfcxfr 2749 . . . . . . . . . 10 𝑡𝑋
6059nfeq2 2766 . . . . . . . . 9 𝑡 = 𝑋
61 fveq1 6102 . . . . . . . . . . 11 ( = 𝑋 → (𝑡) = (𝑋𝑡))
6261breq2d 4595 . . . . . . . . . 10 ( = 𝑋 → (0 ≤ (𝑡) ↔ 0 ≤ (𝑋𝑡)))
6361breq1d 4593 . . . . . . . . . 10 ( = 𝑋 → ((𝑡) ≤ 1 ↔ (𝑋𝑡) ≤ 1))
6462, 63anbi12d 743 . . . . . . . . 9 ( = 𝑋 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
6560, 64ralbid 2966 . . . . . . . 8 ( = 𝑋 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
6636, 37, 46, 65elrabf 3329 . . . . . . 7 (𝑋 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ↔ (𝑋𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
6725, 66bitri 263 . . . . . 6 (𝑋𝑌 ↔ (𝑋𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
6823, 67sylib 207 . . . . 5 (𝜑 → (𝑋𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
6968simprd 478 . . . 4 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1))
70 stoweidlem51.1 . . . . 5 𝑖𝜑
71 stoweidlem51.8 . . . . 5 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
72 stoweidlem51.9 . . . . 5 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
73 stoweidlem51.11 . . . . 5 (𝜑𝑊:(1...𝑀)⟶𝑉)
74 stoweidlem51.14 . . . . 5 (𝜑𝐷 ran 𝑊)
75 stoweidlem51.15 . . . . 5 (𝜑𝐷𝑇)
76 nfv 1830 . . . . . . 7 𝑡 𝑖 ∈ (1...𝑀)
7717, 76nfan 1816 . . . . . 6 𝑡(𝜑𝑖 ∈ (1...𝑀))
7816fnvinran 38196 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝑌)
79 fveq1 6102 . . . . . . . . . . . . . . . . 17 ( = (𝑈𝑖) → (𝑡) = ((𝑈𝑖)‘𝑡))
8079breq2d 4595 . . . . . . . . . . . . . . . 16 ( = (𝑈𝑖) → (0 ≤ (𝑡) ↔ 0 ≤ ((𝑈𝑖)‘𝑡)))
8179breq1d 4593 . . . . . . . . . . . . . . . 16 ( = (𝑈𝑖) → ((𝑡) ≤ 1 ↔ ((𝑈𝑖)‘𝑡) ≤ 1))
8280, 81anbi12d 743 . . . . . . . . . . . . . . 15 ( = (𝑈𝑖) → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
8382ralbidv 2969 . . . . . . . . . . . . . 14 ( = (𝑈𝑖) → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
8483, 1elrab2 3333 . . . . . . . . . . . . 13 ((𝑈𝑖) ∈ 𝑌 ↔ ((𝑈𝑖) ∈ 𝐴 ∧ ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
8584simplbi 475 . . . . . . . . . . . 12 ((𝑈𝑖) ∈ 𝑌 → (𝑈𝑖) ∈ 𝐴)
8678, 85syl 17 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝐴)
87 eleq1 2676 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈𝑖) → (𝑓𝐴 ↔ (𝑈𝑖) ∈ 𝐴))
8887anbi2d 736 . . . . . . . . . . . . . 14 (𝑓 = (𝑈𝑖) → ((𝜑𝑓𝐴) ↔ (𝜑 ∧ (𝑈𝑖) ∈ 𝐴)))
89 feq1 5939 . . . . . . . . . . . . . 14 (𝑓 = (𝑈𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈𝑖):𝑇⟶ℝ))
9088, 89imbi12d 333 . . . . . . . . . . . . 13 (𝑓 = (𝑈𝑖) → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈𝑖) ∈ 𝐴) → (𝑈𝑖):𝑇⟶ℝ)))
9119a1i 11 . . . . . . . . . . . . 13 (𝑓𝐴 → ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ))
9290, 91vtoclga 3245 . . . . . . . . . . . 12 ((𝑈𝑖) ∈ 𝐴 → ((𝜑 ∧ (𝑈𝑖) ∈ 𝐴) → (𝑈𝑖):𝑇⟶ℝ))
9392anabsi7 856 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈𝑖) ∈ 𝐴) → (𝑈𝑖):𝑇⟶ℝ)
9486, 93syldan 486 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
9594adantr 480 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → (𝑈𝑖):𝑇⟶ℝ)
9673fnvinran 38196 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊𝑖) ∈ 𝑉)
97 simpl 472 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
9897, 96jca 553 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑊𝑖) ∈ 𝑉))
99 stoweidlem51.3 . . . . . . . . . . . . . 14 𝑤𝜑
100 stoweidlem51.4 . . . . . . . . . . . . . . 15 𝑤𝑉
101100nfel2 2767 . . . . . . . . . . . . . 14 𝑤(𝑊𝑖) ∈ 𝑉
10299, 101nfan 1816 . . . . . . . . . . . . 13 𝑤(𝜑 ∧ (𝑊𝑖) ∈ 𝑉)
103 nfv 1830 . . . . . . . . . . . . 13 𝑤(𝑊𝑖) ⊆ 𝑇
104102, 103nfim 1813 . . . . . . . . . . . 12 𝑤((𝜑 ∧ (𝑊𝑖) ∈ 𝑉) → (𝑊𝑖) ⊆ 𝑇)
105 eleq1 2676 . . . . . . . . . . . . . 14 (𝑤 = (𝑊𝑖) → (𝑤𝑉 ↔ (𝑊𝑖) ∈ 𝑉))
106105anbi2d 736 . . . . . . . . . . . . 13 (𝑤 = (𝑊𝑖) → ((𝜑𝑤𝑉) ↔ (𝜑 ∧ (𝑊𝑖) ∈ 𝑉)))
107 sseq1 3589 . . . . . . . . . . . . 13 (𝑤 = (𝑊𝑖) → (𝑤𝑇 ↔ (𝑊𝑖) ⊆ 𝑇))
108106, 107imbi12d 333 . . . . . . . . . . . 12 (𝑤 = (𝑊𝑖) → (((𝜑𝑤𝑉) → 𝑤𝑇) ↔ ((𝜑 ∧ (𝑊𝑖) ∈ 𝑉) → (𝑊𝑖) ⊆ 𝑇)))
109 stoweidlem51.13 . . . . . . . . . . . 12 ((𝜑𝑤𝑉) → 𝑤𝑇)
110104, 108, 109vtoclg1f 3238 . . . . . . . . . . 11 ((𝑊𝑖) ∈ 𝑉 → ((𝜑 ∧ (𝑊𝑖) ∈ 𝑉) → (𝑊𝑖) ⊆ 𝑇))
11196, 98, 110sylc 63 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊𝑖) ⊆ 𝑇)
112111sselda 3568 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → 𝑡𝑇)
11395, 112ffvelrnd 6268 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) ∈ ℝ)
114 stoweidlem51.22 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
115114rpred 11748 . . . . . . . . . 10 (𝜑𝐸 ∈ ℝ)
116115ad2antrr 758 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → 𝐸 ∈ ℝ)
11711ad2antrr 758 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → 𝑀 ∈ ℝ)
1187nnne0d 10942 . . . . . . . . . 10 (𝜑𝑀 ≠ 0)
119118ad2antrr 758 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → 𝑀 ≠ 0)
120116, 117, 119redivcld 10732 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → (𝐸 / 𝑀) ∈ ℝ)
121 stoweidlem51.17 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑈𝑖)‘𝑡) < (𝐸 / 𝑀))
122121r19.21bi 2916 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) < (𝐸 / 𝑀))
123 1red 9934 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
124 0lt1 10429 . . . . . . . . . . . . 13 0 < 1
125124a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
1267nngt0d 10941 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑀)
127114rpregt0d 11754 . . . . . . . . . . . 12 (𝜑 → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
128 lediv2 10792 . . . . . . . . . . . 12 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1)))
129123, 125, 11, 126, 127, 128syl221anc 1329 . . . . . . . . . . 11 (𝜑 → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1)))
13010, 129mpbid 221 . . . . . . . . . 10 (𝜑 → (𝐸 / 𝑀) ≤ (𝐸 / 1))
131114rpcnd 11750 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℂ)
132131div1d 10672 . . . . . . . . . 10 (𝜑 → (𝐸 / 1) = 𝐸)
133130, 132breqtrd 4609 . . . . . . . . 9 (𝜑 → (𝐸 / 𝑀) ≤ 𝐸)
134133ad2antrr 758 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → (𝐸 / 𝑀) ≤ 𝐸)
135113, 120, 116, 122, 134ltletrd 10076 . . . . . . 7 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) < 𝐸)
136135ex 449 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑡 ∈ (𝑊𝑖) → ((𝑈𝑖)‘𝑡) < 𝐸))
13777, 136ralrimi 2940 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑈𝑖)‘𝑡) < 𝐸)
13870, 17, 1, 4, 5, 71, 72, 7, 73, 16, 74, 75, 137, 22, 19, 20, 114stoweidlem48 38941 . . . 4 (𝜑 → ∀𝑡𝐷 (𝑋𝑡) < 𝐸)
139 stoweidlem51.18 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
140 stoweidlem51.23 . . . . 5 (𝜑𝐸 < (1 / 3))
1413sseli 3564 . . . . . 6 (𝑓𝑌𝑓𝐴)
142141, 19sylan2 490 . . . . 5 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
143 stoweidlem51.16 . . . . 5 (𝜑𝐵𝑇)
14470, 17, 51, 4, 5, 71, 72, 7, 16, 139, 114, 140, 142, 21, 22, 143stoweidlem42 38935 . . . 4 (𝜑 → ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))
14569, 138, 1443jca 1235 . . 3 (𝜑 → (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑋𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡)))
14624, 145jca 553 . 2 (𝜑 → (𝑋𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑋𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))))
147 eleq1 2676 . . . 4 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
14859nfeq2 2766 . . . . . 6 𝑡 𝑥 = 𝑋
149 fveq1 6102 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥𝑡) = (𝑋𝑡))
150149breq2d 4595 . . . . . . 7 (𝑥 = 𝑋 → (0 ≤ (𝑥𝑡) ↔ 0 ≤ (𝑋𝑡)))
151149breq1d 4593 . . . . . . 7 (𝑥 = 𝑋 → ((𝑥𝑡) ≤ 1 ↔ (𝑋𝑡) ≤ 1))
152150, 151anbi12d 743 . . . . . 6 (𝑥 = 𝑋 → ((0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
153148, 152ralbid 2966 . . . . 5 (𝑥 = 𝑋 → (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
154149breq1d 4593 . . . . . 6 (𝑥 = 𝑋 → ((𝑥𝑡) < 𝐸 ↔ (𝑋𝑡) < 𝐸))
155148, 154ralbid 2966 . . . . 5 (𝑥 = 𝑋 → (∀𝑡𝐷 (𝑥𝑡) < 𝐸 ↔ ∀𝑡𝐷 (𝑋𝑡) < 𝐸))
156149breq2d 4595 . . . . . 6 (𝑥 = 𝑋 → ((1 − 𝐸) < (𝑥𝑡) ↔ (1 − 𝐸) < (𝑋𝑡)))
157148, 156ralbid 2966 . . . . 5 (𝑥 = 𝑋 → (∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡) ↔ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡)))
158153, 155, 1573anbi123d 1391 . . . 4 (𝑥 = 𝑋 → ((∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)) ↔ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑋𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))))
159147, 158anbi12d 743 . . 3 (𝑥 = 𝑋 → ((𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))) ↔ (𝑋𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑋𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡)))))
160159spcegv 3267 . 2 (𝑋𝐴 → ((𝑋𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑋𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))) → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))))
16124, 146, 160sylc 63 1 (𝜑 → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wnf 1699  wcel 1977  wnfc 2738  wne 2780  wral 2896  {crab 2900  Vcvv 3173  wss 3540   cuni 4372   class class class wbr 4583  cmpt 4643  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  cr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  3c3 10948  cz 11254  +crp 11708  ...cfz 12197  seqcseq 12663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723
This theorem is referenced by:  stoweidlem54  38947
  Copyright terms: Public domain W3C validator