MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bernneq Structured version   Visualization version   GIF version

Theorem bernneq 12852
Description: Bernoulli's inequality, due to Johan Bernoulli (1667-1748). (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
bernneq ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))

Proof of Theorem bernneq
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6557 . . . . . . . 8 (𝑗 = 0 → (𝐴 · 𝑗) = (𝐴 · 0))
21oveq2d 6565 . . . . . . 7 (𝑗 = 0 → (1 + (𝐴 · 𝑗)) = (1 + (𝐴 · 0)))
3 oveq2 6557 . . . . . . 7 (𝑗 = 0 → ((1 + 𝐴)↑𝑗) = ((1 + 𝐴)↑0))
42, 3breq12d 4596 . . . . . 6 (𝑗 = 0 → ((1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗) ↔ (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0)))
54imbi2d 329 . . . . 5 (𝑗 = 0 → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗)) ↔ ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0))))
6 oveq2 6557 . . . . . . . 8 (𝑗 = 𝑘 → (𝐴 · 𝑗) = (𝐴 · 𝑘))
76oveq2d 6565 . . . . . . 7 (𝑗 = 𝑘 → (1 + (𝐴 · 𝑗)) = (1 + (𝐴 · 𝑘)))
8 oveq2 6557 . . . . . . 7 (𝑗 = 𝑘 → ((1 + 𝐴)↑𝑗) = ((1 + 𝐴)↑𝑘))
97, 8breq12d 4596 . . . . . 6 (𝑗 = 𝑘 → ((1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗) ↔ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘)))
109imbi2d 329 . . . . 5 (𝑗 = 𝑘 → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗)) ↔ ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))))
11 oveq2 6557 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (𝐴 · 𝑗) = (𝐴 · (𝑘 + 1)))
1211oveq2d 6565 . . . . . . 7 (𝑗 = (𝑘 + 1) → (1 + (𝐴 · 𝑗)) = (1 + (𝐴 · (𝑘 + 1))))
13 oveq2 6557 . . . . . . 7 (𝑗 = (𝑘 + 1) → ((1 + 𝐴)↑𝑗) = ((1 + 𝐴)↑(𝑘 + 1)))
1412, 13breq12d 4596 . . . . . 6 (𝑗 = (𝑘 + 1) → ((1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗) ↔ (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1))))
1514imbi2d 329 . . . . 5 (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗)) ↔ ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1)))))
16 oveq2 6557 . . . . . . . 8 (𝑗 = 𝑁 → (𝐴 · 𝑗) = (𝐴 · 𝑁))
1716oveq2d 6565 . . . . . . 7 (𝑗 = 𝑁 → (1 + (𝐴 · 𝑗)) = (1 + (𝐴 · 𝑁)))
18 oveq2 6557 . . . . . . 7 (𝑗 = 𝑁 → ((1 + 𝐴)↑𝑗) = ((1 + 𝐴)↑𝑁))
1917, 18breq12d 4596 . . . . . 6 (𝑗 = 𝑁 → ((1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗) ↔ (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁)))
2019imbi2d 329 . . . . 5 (𝑗 = 𝑁 → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗)) ↔ ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))))
21 recn 9905 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
22 mul01 10094 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
2322oveq2d 6565 . . . . . . . . 9 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) = (1 + 0))
24 1p0e1 11010 . . . . . . . . 9 (1 + 0) = 1
2523, 24syl6eq 2660 . . . . . . . 8 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) = 1)
26 1le1 10534 . . . . . . . . 9 1 ≤ 1
27 ax-1cn 9873 . . . . . . . . . . 11 1 ∈ ℂ
28 addcl 9897 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) ∈ ℂ)
2927, 28mpan 702 . . . . . . . . . 10 (𝐴 ∈ ℂ → (1 + 𝐴) ∈ ℂ)
30 exp0 12726 . . . . . . . . . 10 ((1 + 𝐴) ∈ ℂ → ((1 + 𝐴)↑0) = 1)
3129, 30syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → ((1 + 𝐴)↑0) = 1)
3226, 31syl5breqr 4621 . . . . . . . 8 (𝐴 ∈ ℂ → 1 ≤ ((1 + 𝐴)↑0))
3325, 32eqbrtrd 4605 . . . . . . 7 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0))
3421, 33syl 17 . . . . . 6 (𝐴 ∈ ℝ → (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0))
3534adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0))
36 1re 9918 . . . . . . . . . . . . . 14 1 ∈ ℝ
37 nn0re 11178 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
38 remulcl 9900 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 · 𝑘) ∈ ℝ)
3937, 38sylan2 490 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴 · 𝑘) ∈ ℝ)
40 readdcl 9898 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ (𝐴 · 𝑘) ∈ ℝ) → (1 + (𝐴 · 𝑘)) ∈ ℝ)
4136, 39, 40sylancr 694 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (1 + (𝐴 · 𝑘)) ∈ ℝ)
42 simpl 472 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
43 readdcl 9898 . . . . . . . . . . . . 13 (((1 + (𝐴 · 𝑘)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((1 + (𝐴 · 𝑘)) + 𝐴) ∈ ℝ)
4441, 42, 43syl2anc 691 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + (𝐴 · 𝑘)) + 𝐴) ∈ ℝ)
4544adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) + 𝐴) ∈ ℝ)
46 readdcl 9898 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 + 𝐴) ∈ ℝ)
4736, 46mpan 702 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℝ)
4847adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (1 + 𝐴) ∈ ℝ)
4941, 48remulcld 9949 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) ∈ ℝ)
5049adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) ∈ ℝ)
51 reexpcl 12739 . . . . . . . . . . . . . 14 (((1 + 𝐴) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + 𝐴)↑𝑘) ∈ ℝ)
5247, 51sylan 487 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + 𝐴)↑𝑘) ∈ ℝ)
5352, 48remulcld 9949 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (((1 + 𝐴)↑𝑘) · (1 + 𝐴)) ∈ ℝ)
5453adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (((1 + 𝐴)↑𝑘) · (1 + 𝐴)) ∈ ℝ)
55 remulcl 9900 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 · 𝐴) ∈ ℝ)
5655anidms 675 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (𝐴 · 𝐴) ∈ ℝ)
57 msqge0 10428 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴))
5856, 57jca 553 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → ((𝐴 · 𝐴) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐴)))
59 nn0ge0 11195 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → 0 ≤ 𝑘)
6037, 59jca 553 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘))
61 mulge0 10425 . . . . . . . . . . . . . . . 16 ((((𝐴 · 𝐴) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐴)) ∧ (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘)) → 0 ≤ ((𝐴 · 𝐴) · 𝑘))
6258, 60, 61syl2an 493 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 0 ≤ ((𝐴 · 𝐴) · 𝑘))
6321adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
64 nn0cn 11179 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
6564adantl 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
6663, 63, 65mul32d 10125 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴 · 𝐴) · 𝑘) = ((𝐴 · 𝑘) · 𝐴))
6762, 66breqtrd 4609 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 0 ≤ ((𝐴 · 𝑘) · 𝐴))
68 simpl 472 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → 𝐴 ∈ ℝ)
6938, 68remulcld 9949 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴 · 𝑘) · 𝐴) ∈ ℝ)
7037, 69sylan2 490 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴 · 𝑘) · 𝐴) ∈ ℝ)
7144, 70addge01d 10494 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (0 ≤ ((𝐴 · 𝑘) · 𝐴) ↔ ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴))))
7267, 71mpbid 221 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴)))
73 mulcl 9899 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · 𝑘) ∈ ℂ)
74 addcl 9897 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ (𝐴 · 𝑘) ∈ ℂ) → (1 + (𝐴 · 𝑘)) ∈ ℂ)
7527, 73, 74sylancr 694 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (1 + (𝐴 · 𝑘)) ∈ ℂ)
76 simpl 472 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → 𝐴 ∈ ℂ)
7773, 76mulcld 9939 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝐴 · 𝑘) · 𝐴) ∈ ℂ)
7875, 76, 77addassd 9941 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴)) = ((1 + (𝐴 · 𝑘)) + (𝐴 + ((𝐴 · 𝑘) · 𝐴))))
79 muladd11 10085 . . . . . . . . . . . . . . . 16 (((𝐴 · 𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) = ((1 + (𝐴 · 𝑘)) + (𝐴 + ((𝐴 · 𝑘) · 𝐴))))
8073, 76, 79syl2anc 691 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) = ((1 + (𝐴 · 𝑘)) + (𝐴 + ((𝐴 · 𝑘) · 𝐴))))
8178, 80eqtr4d 2647 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴)) = ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)))
8221, 64, 81syl2an 493 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴)) = ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)))
8372, 82breqtrd 4609 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)))
8483adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)))
8541adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + (𝐴 · 𝑘)) ∈ ℝ)
8652adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + 𝐴)↑𝑘) ∈ ℝ)
8748adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + 𝐴) ∈ ℝ)
88 neg1rr 11002 . . . . . . . . . . . . . . . 16 -1 ∈ ℝ
89 leadd2 10376 . . . . . . . . . . . . . . . 16 ((-1 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (-1 ≤ 𝐴 ↔ (1 + -1) ≤ (1 + 𝐴)))
9088, 36, 89mp3an13 1407 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (-1 ≤ 𝐴 ↔ (1 + -1) ≤ (1 + 𝐴)))
91 1pneg1e0 11006 . . . . . . . . . . . . . . . 16 (1 + -1) = 0
9291breq1i 4590 . . . . . . . . . . . . . . 15 ((1 + -1) ≤ (1 + 𝐴) ↔ 0 ≤ (1 + 𝐴))
9390, 92syl6bb 275 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → (-1 ≤ 𝐴 ↔ 0 ≤ (1 + 𝐴)))
9493biimpa 500 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → 0 ≤ (1 + 𝐴))
9594ad2ant2r 779 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → 0 ≤ (1 + 𝐴))
96 simprr 792 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))
9785, 86, 87, 95, 96lemul1ad 10842 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) ≤ (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
9845, 50, 54, 84, 97letrd 10073 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
99 adddi 9904 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + (𝐴 · 1)))
10027, 99mp3an3 1405 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + (𝐴 · 1)))
101 mulid1 9916 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
102101adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · 1) = 𝐴)
103102oveq2d 6565 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝐴 · 𝑘) + (𝐴 · 1)) = ((𝐴 · 𝑘) + 𝐴))
104100, 103eqtrd 2644 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + 𝐴))
105104oveq2d 6565 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (1 + (𝐴 · (𝑘 + 1))) = (1 + ((𝐴 · 𝑘) + 𝐴)))
106 addass 9902 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (𝐴 · 𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) + 𝐴) = (1 + ((𝐴 · 𝑘) + 𝐴)))
10727, 106mp3an1 1403 . . . . . . . . . . . . . 14 (((𝐴 · 𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) + 𝐴) = (1 + ((𝐴 · 𝑘) + 𝐴)))
10873, 76, 107syl2anc 691 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) + 𝐴) = (1 + ((𝐴 · 𝑘) + 𝐴)))
109105, 108eqtr4d 2647 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (1 + (𝐴 · (𝑘 + 1))) = ((1 + (𝐴 · 𝑘)) + 𝐴))
11021, 64, 109syl2an 493 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (1 + (𝐴 · (𝑘 + 1))) = ((1 + (𝐴 · 𝑘)) + 𝐴))
111110adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + (𝐴 · (𝑘 + 1))) = ((1 + (𝐴 · 𝑘)) + 𝐴))
11227, 21, 28sylancr 694 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℂ)
113 expp1 12729 . . . . . . . . . . . 12 (((1 + 𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1 + 𝐴)↑(𝑘 + 1)) = (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
114112, 113sylan 487 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + 𝐴)↑(𝑘 + 1)) = (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
115114adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + 𝐴)↑(𝑘 + 1)) = (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
11698, 111, 1153brtr4d 4615 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1)))
117116exp43 638 . . . . . . . 8 (𝐴 ∈ ℝ → (𝑘 ∈ ℕ0 → (-1 ≤ 𝐴 → ((1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1))))))
118117com12 32 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝐴 ∈ ℝ → (-1 ≤ 𝐴 → ((1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1))))))
119118impd 446 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → ((1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1)))))
120119a2d 29 . . . . 5 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘)) → ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1)))))
1215, 10, 15, 20, 35, 120nn0ind 11348 . . . 4 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁)))
122121expd 451 . . 3 (𝑁 ∈ ℕ0 → (𝐴 ∈ ℝ → (-1 ≤ 𝐴 → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))))
123122com12 32 . 2 (𝐴 ∈ ℝ → (𝑁 ∈ ℕ0 → (-1 ≤ 𝐴 → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))))
1241233imp 1249 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cle 9954  -cneg 10146  0cn0 11169  cexp 12722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664  df-exp 12723
This theorem is referenced by:  bernneq2  12853  stoweidlem1  38894  stoweidlem10  38903  stoweidlem42  38935
  Copyright terms: Public domain W3C validator