Proof of Theorem mulge0
Step | Hyp | Ref
| Expression |
1 | | 0red 9920 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ∈
ℝ) |
2 | | simpl 472 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈
ℝ) |
3 | 1, 2 | leloed 10059 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤
𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴))) |
4 | | simpr 476 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈
ℝ) |
5 | 1, 4 | leloed 10059 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤
𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵))) |
6 | 3, 5 | anbi12d 743 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤
𝐴 ∧ 0 ≤ 𝐵) ↔ ((0 < 𝐴 ∨ 0 = 𝐴) ∧ (0 < 𝐵 ∨ 0 = 𝐵)))) |
7 | | 0red 9920 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 <
𝐴 ∧ 0 < 𝐵)) → 0 ∈
ℝ) |
8 | | simpll 786 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 <
𝐴 ∧ 0 < 𝐵)) → 𝐴 ∈ ℝ) |
9 | | simplr 788 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 <
𝐴 ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ) |
10 | 8, 9 | remulcld 9949 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 <
𝐴 ∧ 0 < 𝐵)) → (𝐴 · 𝐵) ∈ ℝ) |
11 | | mulgt0 9994 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵)) |
12 | 11 | an4s 865 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 <
𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵)) |
13 | 7, 10, 12 | ltled 10064 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 <
𝐴 ∧ 0 < 𝐵)) → 0 ≤ (𝐴 · 𝐵)) |
14 | 13 | ex 449 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <
𝐴 ∧ 0 < 𝐵) → 0 ≤ (𝐴 · 𝐵))) |
15 | | 0re 9919 |
. . . . . . . . 9
⊢ 0 ∈
ℝ |
16 | | leid 10012 |
. . . . . . . . 9
⊢ (0 ∈
ℝ → 0 ≤ 0) |
17 | 15, 16 | ax-mp 5 |
. . . . . . . 8
⊢ 0 ≤
0 |
18 | 4 | recnd 9947 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈
ℂ) |
19 | 18 | mul02d 10113 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0
· 𝐵) =
0) |
20 | 17, 19 | syl5breqr 4621 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ≤
(0 · 𝐵)) |
21 | | oveq1 6556 |
. . . . . . . 8
⊢ (0 =
𝐴 → (0 · 𝐵) = (𝐴 · 𝐵)) |
22 | 21 | breq2d 4595 |
. . . . . . 7
⊢ (0 =
𝐴 → (0 ≤ (0
· 𝐵) ↔ 0 ≤
(𝐴 · 𝐵))) |
23 | 20, 22 | syl5ibcom 234 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 =
𝐴 → 0 ≤ (𝐴 · 𝐵))) |
24 | 23 | adantrd 483 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 =
𝐴 ∧ 0 < 𝐵) → 0 ≤ (𝐴 · 𝐵))) |
25 | 2 | recnd 9947 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈
ℂ) |
26 | 25 | mul01d 10114 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 0) =
0) |
27 | 17, 26 | syl5breqr 4621 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ≤
(𝐴 ·
0)) |
28 | | oveq2 6557 |
. . . . . . . 8
⊢ (0 =
𝐵 → (𝐴 · 0) = (𝐴 · 𝐵)) |
29 | 28 | breq2d 4595 |
. . . . . . 7
⊢ (0 =
𝐵 → (0 ≤ (𝐴 · 0) ↔ 0 ≤
(𝐴 · 𝐵))) |
30 | 27, 29 | syl5ibcom 234 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 =
𝐵 → 0 ≤ (𝐴 · 𝐵))) |
31 | 30 | adantld 482 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <
𝐴 ∧ 0 = 𝐵) → 0 ≤ (𝐴 · 𝐵))) |
32 | 30 | adantld 482 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 =
𝐴 ∧ 0 = 𝐵) → 0 ≤ (𝐴 · 𝐵))) |
33 | 14, 24, 31, 32 | ccased 985 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((0
< 𝐴 ∨ 0 = 𝐴) ∧ (0 < 𝐵 ∨ 0 = 𝐵)) → 0 ≤ (𝐴 · 𝐵))) |
34 | 6, 33 | sylbid 229 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤
𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵))) |
35 | 34 | imp 444 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵)) |
36 | 35 | an4s 865 |
1
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵)) |