MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crreczi Structured version   Visualization version   GIF version

Theorem crreczi 12851
Description: Reciprocal of a complex number in terms of real and imaginary components. Remark in [Apostol] p. 361. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Jeff Hankins, 16-Dec-2013.)
Hypotheses
Ref Expression
crrecz.1 𝐴 ∈ ℝ
crrecz.2 𝐵 ∈ ℝ
Assertion
Ref Expression
crreczi ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))))

Proof of Theorem crreczi
StepHypRef Expression
1 crrecz.1 . . . . . . . 8 𝐴 ∈ ℝ
21recni 9931 . . . . . . 7 𝐴 ∈ ℂ
32sqcli 12806 . . . . . 6 (𝐴↑2) ∈ ℂ
4 ax-icn 9874 . . . . . . . 8 i ∈ ℂ
5 crrecz.2 . . . . . . . . 9 𝐵 ∈ ℝ
65recni 9931 . . . . . . . 8 𝐵 ∈ ℂ
74, 6mulcli 9924 . . . . . . 7 (i · 𝐵) ∈ ℂ
87sqcli 12806 . . . . . 6 ((i · 𝐵)↑2) ∈ ℂ
93, 8negsubi 10238 . . . . 5 ((𝐴↑2) + -((i · 𝐵)↑2)) = ((𝐴↑2) − ((i · 𝐵)↑2))
104, 6sqmuli 12809 . . . . . . . . 9 ((i · 𝐵)↑2) = ((i↑2) · (𝐵↑2))
11 i2 12827 . . . . . . . . . 10 (i↑2) = -1
1211oveq1i 6559 . . . . . . . . 9 ((i↑2) · (𝐵↑2)) = (-1 · (𝐵↑2))
13 ax-1cn 9873 . . . . . . . . . 10 1 ∈ ℂ
146sqcli 12806 . . . . . . . . . 10 (𝐵↑2) ∈ ℂ
1513, 14mulneg1i 10355 . . . . . . . . 9 (-1 · (𝐵↑2)) = -(1 · (𝐵↑2))
1610, 12, 153eqtri 2636 . . . . . . . 8 ((i · 𝐵)↑2) = -(1 · (𝐵↑2))
1716negeqi 10153 . . . . . . 7 -((i · 𝐵)↑2) = --(1 · (𝐵↑2))
1813, 14mulcli 9924 . . . . . . . 8 (1 · (𝐵↑2)) ∈ ℂ
1918negnegi 10230 . . . . . . 7 --(1 · (𝐵↑2)) = (1 · (𝐵↑2))
2014mulid2i 9922 . . . . . . 7 (1 · (𝐵↑2)) = (𝐵↑2)
2117, 19, 203eqtri 2636 . . . . . 6 -((i · 𝐵)↑2) = (𝐵↑2)
2221oveq2i 6560 . . . . 5 ((𝐴↑2) + -((i · 𝐵)↑2)) = ((𝐴↑2) + (𝐵↑2))
232, 7subsqi 12837 . . . . 5 ((𝐴↑2) − ((i · 𝐵)↑2)) = ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵)))
249, 22, 233eqtr3ri 2641 . . . 4 ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴↑2) + (𝐵↑2))
2524oveq1i 6559 . . 3 (((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) / ((𝐴↑2) + (𝐵↑2))) = (((𝐴↑2) + (𝐵↑2)) / ((𝐴↑2) + (𝐵↑2)))
26 neorian 2876 . . . . 5 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0))
27 sumsqeq0 12804 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0))
281, 5, 27mp2an 704 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0)
2928necon3bbii 2829 . . . . 5 (¬ (𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) ≠ 0)
3026, 29bitri 263 . . . 4 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝐴↑2) + (𝐵↑2)) ≠ 0)
312, 7addcli 9923 . . . . 5 (𝐴 + (i · 𝐵)) ∈ ℂ
322, 7subcli 10236 . . . . 5 (𝐴 − (i · 𝐵)) ∈ ℂ
333, 14addcli 9923 . . . . 5 ((𝐴↑2) + (𝐵↑2)) ∈ ℂ
3431, 32, 33divasszi 10654 . . . 4 (((𝐴↑2) + (𝐵↑2)) ≠ 0 → (((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) / ((𝐴↑2) + (𝐵↑2))) = ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))))
3530, 34sylbi 206 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) / ((𝐴↑2) + (𝐵↑2))) = ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))))
36 divid 10593 . . . . 5 ((((𝐴↑2) + (𝐵↑2)) ∈ ℂ ∧ ((𝐴↑2) + (𝐵↑2)) ≠ 0) → (((𝐴↑2) + (𝐵↑2)) / ((𝐴↑2) + (𝐵↑2))) = 1)
3733, 36mpan 702 . . . 4 (((𝐴↑2) + (𝐵↑2)) ≠ 0 → (((𝐴↑2) + (𝐵↑2)) / ((𝐴↑2) + (𝐵↑2))) = 1)
3830, 37sylbi 206 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (((𝐴↑2) + (𝐵↑2)) / ((𝐴↑2) + (𝐵↑2))) = 1)
3925, 35, 383eqtr3a 2668 . 2 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) = 1)
4032, 33divclzi 10639 . . . 4 (((𝐴↑2) + (𝐵↑2)) ≠ 0 → ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ∈ ℂ)
4130, 40sylbi 206 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ∈ ℂ)
4231a1i 11 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (𝐴 + (i · 𝐵)) ∈ ℂ)
43 crne0 10890 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (𝐴 + (i · 𝐵)) ≠ 0))
441, 5, 43mp2an 704 . . . 4 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (𝐴 + (i · 𝐵)) ≠ 0)
4544biimpi 205 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (𝐴 + (i · 𝐵)) ≠ 0)
46 divmul 10567 . . . 4 ((1 ∈ ℂ ∧ ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ∈ ℂ ∧ ((𝐴 + (i · 𝐵)) ∈ ℂ ∧ (𝐴 + (i · 𝐵)) ≠ 0)) → ((1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ↔ ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) = 1))
4713, 46mp3an1 1403 . . 3 ((((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ∈ ℂ ∧ ((𝐴 + (i · 𝐵)) ∈ ℂ ∧ (𝐴 + (i · 𝐵)) ≠ 0)) → ((1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ↔ ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) = 1))
4841, 42, 45, 47syl12anc 1316 . 2 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → ((1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ↔ ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) = 1))
4939, 48mpbird 246 1 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816  ici 9817   + caddc 9818   · cmul 9820  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  cexp 12722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664  df-exp 12723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator