Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulcli | Structured version Visualization version GIF version |
Description: Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
mulcli | ⊢ (𝐴 · 𝐵) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mulcl 9899 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | mp2an 704 | 1 ⊢ (𝐴 · 𝐵) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1977 (class class class)co 6549 ℂcc 9813 · cmul 9820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcl 9877 |
This theorem depends on definitions: df-bi 196 df-an 385 |
This theorem is referenced by: mul02lem2 10092 addid1 10095 cnegex2 10097 ixi 10535 2mulicn 11132 numma 11433 nummac 11434 9t11e99 11547 9t11e99OLD 11548 decbin2 11559 irec 12826 binom2i 12836 crreczi 12851 3dec 12912 sq10OLD 12913 3decOLD 12915 nn0opthi 12919 faclbnd4lem1 12942 rei 13744 imi 13745 iseraltlem2 14261 bpoly3 14628 bpoly4 14629 3dvdsdec 14892 3dvdsdecOLD 14893 3dvds2dec 14894 3dvds2decOLD 14895 odd2np1 14903 gcdaddmlem 15083 3lcm2e6woprm 15166 6lcm4e12 15167 modxai 15610 mod2xnegi 15613 decexp2 15617 decsplitOLD 15629 karatsuba 15630 karatsubaOLD 15631 sinhalfpilem 24019 ef2pi 24033 ef2kpi 24034 efper 24035 sinperlem 24036 sin2kpi 24039 cos2kpi 24040 sin2pim 24041 cos2pim 24042 sincos4thpi 24069 sincos6thpi 24071 pige3 24073 abssinper 24074 efeq1 24079 logneg 24138 logm1 24139 eflogeq 24152 logimul 24164 logneg2 24165 cxpsqrt 24249 root1eq1 24296 cxpeq 24298 ang180lem1 24339 ang180lem3 24341 ang180lem4 24342 1cubrlem 24368 1cubr 24369 quart1lem 24382 asin1 24421 atanlogsublem 24442 log2ublem2 24474 log2ublem3 24475 log2ub 24476 bclbnd 24805 bposlem8 24816 bposlem9 24817 lgsdir2lem5 24854 2lgsoddprmlem3c 24937 2lgsoddprmlem3d 24938 ax5seglem7 25615 ip0i 27064 ip1ilem 27065 ipasslem10 27078 siilem1 27090 normlem0 27350 normlem1 27351 normlem2 27352 normlem3 27353 normlem5 27355 normlem7 27357 bcseqi 27361 norm-ii-i 27378 normpar2i 27397 polid2i 27398 h1de2i 27796 lnopunilem1 28253 lnophmlem2 28260 ballotth 29926 problem2 30813 problem2OLD 30814 problem4 30816 quad3 30818 logi 30873 heiborlem6 32785 proot1ex 36798 areaquad 36821 coskpi2 38749 cosnegpi 38750 cosknegpi 38752 wallispilem4 38961 dirkerper 38989 dirkertrigeq 38994 dirkercncflem2 38997 fourierdlem57 39056 fourierdlem62 39061 fourierswlem 39123 fmtnorec3 39998 fmtnorec4 39999 lighneallem3 40062 3exp4mod41 40071 41prothprmlem1 40072 zlmodzxzequap 42082 nn0sumshdiglemB 42212 i2linesi 42333 |
Copyright terms: Public domain | W3C validator |