MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bernneq Structured version   Unicode version

Theorem bernneq 11982
Description: Bernoulli's inequality, due to Johan Bernoulli (1667-1748). (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
bernneq  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  N ) )  <_  ( ( 1  +  A ) ^ N ) )

Proof of Theorem bernneq
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6094 . . . . . . . 8  |-  ( j  =  0  ->  ( A  x.  j )  =  ( A  x.  0 ) )
21oveq2d 6102 . . . . . . 7  |-  ( j  =  0  ->  (
1  +  ( A  x.  j ) )  =  ( 1  +  ( A  x.  0 ) ) )
3 oveq2 6094 . . . . . . 7  |-  ( j  =  0  ->  (
( 1  +  A
) ^ j )  =  ( ( 1  +  A ) ^
0 ) )
42, 3breq12d 4300 . . . . . 6  |-  ( j  =  0  ->  (
( 1  +  ( A  x.  j ) )  <_  ( (
1  +  A ) ^ j )  <->  ( 1  +  ( A  x.  0 ) )  <_ 
( ( 1  +  A ) ^ 0 ) ) )
54imbi2d 316 . . . . 5  |-  ( j  =  0  ->  (
( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  j ) )  <_  ( ( 1  +  A ) ^
j ) )  <->  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  0 ) )  <_  ( ( 1  +  A ) ^
0 ) ) ) )
6 oveq2 6094 . . . . . . . 8  |-  ( j  =  k  ->  ( A  x.  j )  =  ( A  x.  k ) )
76oveq2d 6102 . . . . . . 7  |-  ( j  =  k  ->  (
1  +  ( A  x.  j ) )  =  ( 1  +  ( A  x.  k
) ) )
8 oveq2 6094 . . . . . . 7  |-  ( j  =  k  ->  (
( 1  +  A
) ^ j )  =  ( ( 1  +  A ) ^
k ) )
97, 8breq12d 4300 . . . . . 6  |-  ( j  =  k  ->  (
( 1  +  ( A  x.  j ) )  <_  ( (
1  +  A ) ^ j )  <->  ( 1  +  ( A  x.  k ) )  <_ 
( ( 1  +  A ) ^ k
) ) )
109imbi2d 316 . . . . 5  |-  ( j  =  k  ->  (
( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  j ) )  <_  ( ( 1  +  A ) ^
j ) )  <->  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  k ) )  <_  ( ( 1  +  A ) ^
k ) ) ) )
11 oveq2 6094 . . . . . . . 8  |-  ( j  =  ( k  +  1 )  ->  ( A  x.  j )  =  ( A  x.  ( k  +  1 ) ) )
1211oveq2d 6102 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  (
1  +  ( A  x.  j ) )  =  ( 1  +  ( A  x.  (
k  +  1 ) ) ) )
13 oveq2 6094 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  (
( 1  +  A
) ^ j )  =  ( ( 1  +  A ) ^
( k  +  1 ) ) )
1412, 13breq12d 4300 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( 1  +  ( A  x.  j ) )  <_  ( (
1  +  A ) ^ j )  <->  ( 1  +  ( A  x.  ( k  +  1 ) ) )  <_ 
( ( 1  +  A ) ^ (
k  +  1 ) ) ) )
1514imbi2d 316 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  j ) )  <_  ( ( 1  +  A ) ^
j ) )  <->  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  ( k  +  1 ) ) )  <_  ( ( 1  +  A ) ^
( k  +  1 ) ) ) ) )
16 oveq2 6094 . . . . . . . 8  |-  ( j  =  N  ->  ( A  x.  j )  =  ( A  x.  N ) )
1716oveq2d 6102 . . . . . . 7  |-  ( j  =  N  ->  (
1  +  ( A  x.  j ) )  =  ( 1  +  ( A  x.  N
) ) )
18 oveq2 6094 . . . . . . 7  |-  ( j  =  N  ->  (
( 1  +  A
) ^ j )  =  ( ( 1  +  A ) ^ N ) )
1917, 18breq12d 4300 . . . . . 6  |-  ( j  =  N  ->  (
( 1  +  ( A  x.  j ) )  <_  ( (
1  +  A ) ^ j )  <->  ( 1  +  ( A  x.  N ) )  <_ 
( ( 1  +  A ) ^ N
) ) )
2019imbi2d 316 . . . . 5  |-  ( j  =  N  ->  (
( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  j ) )  <_  ( ( 1  +  A ) ^
j ) )  <->  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  N ) )  <_  ( ( 1  +  A ) ^ N ) ) ) )
21 recn 9364 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
22 mul01 9540 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( A  x.  0 )  =  0 )
2322oveq2d 6102 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
1  +  ( A  x.  0 ) )  =  ( 1  +  0 ) )
24 1p0e1 10426 . . . . . . . . 9  |-  ( 1  +  0 )  =  1
2523, 24syl6eq 2486 . . . . . . . 8  |-  ( A  e.  CC  ->  (
1  +  ( A  x.  0 ) )  =  1 )
26 1le1 9956 . . . . . . . . 9  |-  1  <_  1
27 ax-1cn 9332 . . . . . . . . . . 11  |-  1  e.  CC
28 addcl 9356 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  +  A
)  e.  CC )
2927, 28mpan 670 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
1  +  A )  e.  CC )
30 exp0 11861 . . . . . . . . . 10  |-  ( ( 1  +  A )  e.  CC  ->  (
( 1  +  A
) ^ 0 )  =  1 )
3129, 30syl 16 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( 1  +  A
) ^ 0 )  =  1 )
3226, 31syl5breqr 4323 . . . . . . . 8  |-  ( A  e.  CC  ->  1  <_  ( ( 1  +  A ) ^ 0 ) )
3325, 32eqbrtrd 4307 . . . . . . 7  |-  ( A  e.  CC  ->  (
1  +  ( A  x.  0 ) )  <_  ( ( 1  +  A ) ^
0 ) )
3421, 33syl 16 . . . . . 6  |-  ( A  e.  RR  ->  (
1  +  ( A  x.  0 ) )  <_  ( ( 1  +  A ) ^
0 ) )
3534adantr 465 . . . . 5  |-  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  ( 1  +  ( A  x.  0 ) )  <_  ( (
1  +  A ) ^ 0 ) )
36 1re 9377 . . . . . . . . . . . . . 14  |-  1  e.  RR
37 nn0re 10580 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  k  e.  RR )
38 remulcl 9359 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  k  e.  RR )  ->  ( A  x.  k
)  e.  RR )
3937, 38sylan2 474 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( A  x.  k
)  e.  RR )
40 readdcl 9357 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  ( A  x.  k
)  e.  RR )  ->  ( 1  +  ( A  x.  k
) )  e.  RR )
4136, 39, 40sylancr 663 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( 1  +  ( A  x.  k ) )  e.  RR )
42 simpl 457 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  ->  A  e.  RR )
43 readdcl 9357 . . . . . . . . . . . . 13  |-  ( ( ( 1  +  ( A  x.  k ) )  e.  RR  /\  A  e.  RR )  ->  ( ( 1  +  ( A  x.  k
) )  +  A
)  e.  RR )
4441, 42, 43syl2anc 661 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  +  ( A  x.  k
) )  +  A
)  e.  RR )
4544adantr 465 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( 1  +  ( A  x.  k ) )  +  A )  e.  RR )
46 readdcl 9357 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  A  e.  RR )  ->  ( 1  +  A
)  e.  RR )
4736, 46mpan 670 . . . . . . . . . . . . . 14  |-  ( A  e.  RR  ->  (
1  +  A )  e.  RR )
4847adantr 465 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( 1  +  A
)  e.  RR )
4941, 48remulcld 9406 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  +  ( A  x.  k
) )  x.  (
1  +  A ) )  e.  RR )
5049adantr 465 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( 1  +  ( A  x.  k ) )  x.  ( 1  +  A ) )  e.  RR )
51 reexpcl 11874 . . . . . . . . . . . . . 14  |-  ( ( ( 1  +  A
)  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  +  A ) ^ k
)  e.  RR )
5247, 51sylan 471 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  +  A ) ^ k
)  e.  RR )
5352, 48remulcld 9406 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( ( 1  +  A ) ^
k )  x.  (
1  +  A ) )  e.  RR )
5453adantr 465 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( ( 1  +  A ) ^ k
)  x.  ( 1  +  A ) )  e.  RR )
55 remulcl 9359 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  RR  /\  A  e.  RR )  ->  ( A  x.  A
)  e.  RR )
5655anidms 645 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  RR  ->  ( A  x.  A )  e.  RR )
57 msqge0 9853 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  RR  ->  0  <_  ( A  x.  A
) )
5856, 57jca 532 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR  ->  (
( A  x.  A
)  e.  RR  /\  0  <_  ( A  x.  A ) ) )
59 nn0ge0 10597 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  0  <_ 
k )
6037, 59jca 532 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( k  e.  RR  /\  0  <_  k ) )
61 mulge0 9849 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  x.  A )  e.  RR  /\  0  <_  ( A  x.  A ) )  /\  ( k  e.  RR  /\  0  <_  k )
)  ->  0  <_  ( ( A  x.  A
)  x.  k ) )
6258, 60, 61syl2an 477 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
0  <_  ( ( A  x.  A )  x.  k ) )
6321adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  ->  A  e.  CC )
64 nn0cn 10581 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  k  e.  CC )
6564adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
k  e.  CC )
6663, 63, 65mul32d 9571 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( A  x.  A )  x.  k
)  =  ( ( A  x.  k )  x.  A ) )
6762, 66breqtrd 4311 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
0  <_  ( ( A  x.  k )  x.  A ) )
68 simpl 457 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR  /\  k  e.  RR )  ->  A  e.  RR )
6938, 68remulcld 9406 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR  /\  k  e.  RR )  ->  ( ( A  x.  k )  x.  A
)  e.  RR )
7037, 69sylan2 474 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( A  x.  k )  x.  A
)  e.  RR )
7144, 70addge01d 9919 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( 0  <_  (
( A  x.  k
)  x.  A )  <-> 
( ( 1  +  ( A  x.  k
) )  +  A
)  <_  ( (
( 1  +  ( A  x.  k ) )  +  A )  +  ( ( A  x.  k )  x.  A ) ) ) )
7267, 71mpbid 210 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  +  ( A  x.  k
) )  +  A
)  <_  ( (
( 1  +  ( A  x.  k ) )  +  A )  +  ( ( A  x.  k )  x.  A ) ) )
73 mulcl 9358 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  k
)  e.  CC )
74 addcl 9356 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  CC  /\  ( A  x.  k
)  e.  CC )  ->  ( 1  +  ( A  x.  k
) )  e.  CC )
7527, 73, 74sylancr 663 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( 1  +  ( A  x.  k ) )  e.  CC )
76 simpl 457 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  A  e.  CC )
7773, 76mulcld 9398 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( A  x.  k )  x.  A
)  e.  CC )
7875, 76, 77addassd 9400 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( ( 1  +  ( A  x.  k ) )  +  A )  +  ( ( A  x.  k
)  x.  A ) )  =  ( ( 1  +  ( A  x.  k ) )  +  ( A  +  ( ( A  x.  k )  x.  A
) ) ) )
79 muladd11 9531 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  x.  k
)  e.  CC  /\  A  e.  CC )  ->  ( ( 1  +  ( A  x.  k
) )  x.  (
1  +  A ) )  =  ( ( 1  +  ( A  x.  k ) )  +  ( A  +  ( ( A  x.  k )  x.  A
) ) ) )
8073, 76, 79syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( 1  +  ( A  x.  k
) )  x.  (
1  +  A ) )  =  ( ( 1  +  ( A  x.  k ) )  +  ( A  +  ( ( A  x.  k )  x.  A
) ) ) )
8178, 80eqtr4d 2473 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( ( 1  +  ( A  x.  k ) )  +  A )  +  ( ( A  x.  k
)  x.  A ) )  =  ( ( 1  +  ( A  x.  k ) )  x.  ( 1  +  A ) ) )
8221, 64, 81syl2an 477 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( ( 1  +  ( A  x.  k ) )  +  A )  +  ( ( A  x.  k
)  x.  A ) )  =  ( ( 1  +  ( A  x.  k ) )  x.  ( 1  +  A ) ) )
8372, 82breqtrd 4311 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  +  ( A  x.  k
) )  +  A
)  <_  ( (
1  +  ( A  x.  k ) )  x.  ( 1  +  A ) ) )
8483adantr 465 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( 1  +  ( A  x.  k ) )  +  A )  <_  ( ( 1  +  ( A  x.  k ) )  x.  ( 1  +  A
) ) )
8541adantr 465 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
1  +  ( A  x.  k ) )  e.  RR )
8652adantr 465 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( 1  +  A
) ^ k )  e.  RR )
8748adantr 465 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
1  +  A )  e.  RR )
88 neg1rr 10418 . . . . . . . . . . . . . . . 16  |-  -u 1  e.  RR
89 leadd2 9800 . . . . . . . . . . . . . . . 16  |-  ( (
-u 1  e.  RR  /\  A  e.  RR  /\  1  e.  RR )  ->  ( -u 1  <_  A 
<->  ( 1  +  -u
1 )  <_  (
1  +  A ) ) )
9088, 36, 89mp3an13 1305 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR  ->  ( -u 1  <_  A  <->  ( 1  +  -u 1 )  <_ 
( 1  +  A
) ) )
91 1pneg1e0 10422 . . . . . . . . . . . . . . . 16  |-  ( 1  +  -u 1 )  =  0
9291breq1i 4294 . . . . . . . . . . . . . . 15  |-  ( ( 1  +  -u 1
)  <_  ( 1  +  A )  <->  0  <_  ( 1  +  A ) )
9390, 92syl6bb 261 . . . . . . . . . . . . . 14  |-  ( A  e.  RR  ->  ( -u 1  <_  A  <->  0  <_  ( 1  +  A ) ) )
9493biimpa 484 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  0  <_  ( 1  +  A ) )
9594ad2ant2r 746 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  0  <_  ( 1  +  A
) )
96 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
1  +  ( A  x.  k ) )  <_  ( ( 1  +  A ) ^
k ) )
9785, 86, 87, 95, 96lemul1ad 10264 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( 1  +  ( A  x.  k ) )  x.  ( 1  +  A ) )  <_  ( ( ( 1  +  A ) ^ k )  x.  ( 1  +  A
) ) )
9845, 50, 54, 84, 97letrd 9520 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( 1  +  ( A  x.  k ) )  +  A )  <_  ( ( ( 1  +  A ) ^ k )  x.  ( 1  +  A
) ) )
99 adddi 9363 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  ( A  x.  ( k  +  1 ) )  =  ( ( A  x.  k )  +  ( A  x.  1 ) ) )
10027, 99mp3an3 1303 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  (
k  +  1 ) )  =  ( ( A  x.  k )  +  ( A  x.  1 ) ) )
101 mulid1 9375 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
102101adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  1 )  =  A )
103102oveq2d 6102 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( A  x.  k )  +  ( A  x.  1 ) )  =  ( ( A  x.  k )  +  A ) )
104100, 103eqtrd 2470 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  (
k  +  1 ) )  =  ( ( A  x.  k )  +  A ) )
105104oveq2d 6102 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( 1  +  ( A  x.  ( k  +  1 ) ) )  =  ( 1  +  ( ( A  x.  k )  +  A ) ) )
106 addass 9361 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  CC  /\  ( A  x.  k
)  e.  CC  /\  A  e.  CC )  ->  ( ( 1  +  ( A  x.  k
) )  +  A
)  =  ( 1  +  ( ( A  x.  k )  +  A ) ) )
10727, 106mp3an1 1301 . . . . . . . . . . . . . 14  |-  ( ( ( A  x.  k
)  e.  CC  /\  A  e.  CC )  ->  ( ( 1  +  ( A  x.  k
) )  +  A
)  =  ( 1  +  ( ( A  x.  k )  +  A ) ) )
10873, 76, 107syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( 1  +  ( A  x.  k
) )  +  A
)  =  ( 1  +  ( ( A  x.  k )  +  A ) ) )
109105, 108eqtr4d 2473 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( 1  +  ( A  x.  ( k  +  1 ) ) )  =  ( ( 1  +  ( A  x.  k ) )  +  A ) )
11021, 64, 109syl2an 477 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( 1  +  ( A  x.  ( k  +  1 ) ) )  =  ( ( 1  +  ( A  x.  k ) )  +  A ) )
111110adantr 465 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
1  +  ( A  x.  ( k  +  1 ) ) )  =  ( ( 1  +  ( A  x.  k ) )  +  A ) )
11227, 21, 28sylancr 663 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  (
1  +  A )  e.  CC )
113 expp1 11864 . . . . . . . . . . . 12  |-  ( ( ( 1  +  A
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( 1  +  A ) ^ (
k  +  1 ) )  =  ( ( ( 1  +  A
) ^ k )  x.  ( 1  +  A ) ) )
114112, 113sylan 471 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  +  A ) ^ (
k  +  1 ) )  =  ( ( ( 1  +  A
) ^ k )  x.  ( 1  +  A ) ) )
115114adantr 465 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( 1  +  A
) ^ ( k  +  1 ) )  =  ( ( ( 1  +  A ) ^ k )  x.  ( 1  +  A
) ) )
11698, 111, 1153brtr4d 4317 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
1  +  ( A  x.  ( k  +  1 ) ) )  <_  ( ( 1  +  A ) ^
( k  +  1 ) ) )
117116exp43 612 . . . . . . . 8  |-  ( A  e.  RR  ->  (
k  e.  NN0  ->  (
-u 1  <_  A  ->  ( ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k )  ->  ( 1  +  ( A  x.  (
k  +  1 ) ) )  <_  (
( 1  +  A
) ^ ( k  +  1 ) ) ) ) ) )
118117com12 31 . . . . . . 7  |-  ( k  e.  NN0  ->  ( A  e.  RR  ->  ( -u 1  <_  A  ->  ( ( 1  +  ( A  x.  k ) )  <_  ( (
1  +  A ) ^ k )  -> 
( 1  +  ( A  x.  ( k  +  1 ) ) )  <_  ( (
1  +  A ) ^ ( k  +  1 ) ) ) ) ) )
119118impd 431 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  ( ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k )  ->  ( 1  +  ( A  x.  (
k  +  1 ) ) )  <_  (
( 1  +  A
) ^ ( k  +  1 ) ) ) ) )
120119a2d 26 . . . . 5  |-  ( k  e.  NN0  ->  ( ( ( A  e.  RR  /\  -u 1  <_  A )  ->  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) )  ->  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  ( k  +  1 ) ) )  <_  ( ( 1  +  A ) ^
( k  +  1 ) ) ) ) )
1215, 10, 15, 20, 35, 120nn0ind 10730 . . . 4  |-  ( N  e.  NN0  ->  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  ( 1  +  ( A  x.  N ) )  <_  ( (
1  +  A ) ^ N ) ) )
122121expd 436 . . 3  |-  ( N  e.  NN0  ->  ( A  e.  RR  ->  ( -u 1  <_  A  ->  ( 1  +  ( A  x.  N ) )  <_  ( ( 1  +  A ) ^ N ) ) ) )
123122com12 31 . 2  |-  ( A  e.  RR  ->  ( N  e.  NN0  ->  ( -u 1  <_  A  ->  ( 1  +  ( A  x.  N ) )  <_  ( ( 1  +  A ) ^ N ) ) ) )
1241233imp 1181 1  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  N ) )  <_  ( ( 1  +  A ) ^ N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   class class class wbr 4287  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    <_ cle 9411   -ucneg 9588   NN0cn0 10571   ^cexp 11857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-n0 10572  df-z 10639  df-uz 10854  df-seq 11799  df-exp 11858
This theorem is referenced by:  bernneq2  11983  stoweidlem1  29749  stoweidlem10  29758  stoweidlem42  29790
  Copyright terms: Public domain W3C validator