Proof of Theorem ltdiv2
Step | Hyp | Ref
| Expression |
1 | | ltrec 10784 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴))) |
2 | 1 | 3adant3 1074 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴))) |
3 | | gt0ne0 10372 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ ∧ 0 <
𝐵) → 𝐵 ≠ 0) |
4 | | rereccl 10622 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈
ℝ) |
5 | 3, 4 | syldan 486 |
. . . . 5
⊢ ((𝐵 ∈ ℝ ∧ 0 <
𝐵) → (1 / 𝐵) ∈
ℝ) |
6 | | gt0ne0 10372 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 ≠ 0) |
7 | | rereccl 10622 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈
ℝ) |
8 | 6, 7 | syldan 486 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 / 𝐴) ∈
ℝ) |
9 | | ltmul2 10753 |
. . . . . 6
⊢ (((1 /
𝐵) ∈ ℝ ∧ (1
/ 𝐴) ∈ ℝ ∧
(𝐶 ∈ ℝ ∧ 0
< 𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴)))) |
10 | 8, 9 | syl3an2 1352 |
. . . . 5
⊢ (((1 /
𝐵) ∈ ℝ ∧
(𝐴 ∈ ℝ ∧ 0
< 𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 <
𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴)))) |
11 | 5, 10 | syl3an1 1351 |
. . . 4
⊢ (((𝐵 ∈ ℝ ∧ 0 <
𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴)))) |
12 | | recn 9905 |
. . . . . . 7
⊢ (𝐶 ∈ ℝ → 𝐶 ∈
ℂ) |
13 | 12 | adantr 480 |
. . . . . 6
⊢ ((𝐶 ∈ ℝ ∧ 0 <
𝐶) → 𝐶 ∈ ℂ) |
14 | | recn 9905 |
. . . . . . . 8
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℂ) |
15 | 14 | adantr 480 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ 0 <
𝐵) → 𝐵 ∈ ℂ) |
16 | 15, 3 | jca 553 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ ∧ 0 <
𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
17 | | recn 9905 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
18 | 17 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 ∈ ℂ) |
19 | 18, 6 | jca 553 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
20 | | divrec 10580 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵))) |
21 | 20 | 3expb 1258 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵))) |
22 | 21 | 3adant3 1074 |
. . . . . . 7
⊢ ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵))) |
23 | | divrec 10580 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴))) |
24 | 23 | 3expb 1258 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴))) |
25 | 24 | 3adant2 1073 |
. . . . . . 7
⊢ ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴))) |
26 | 22, 25 | breq12d 4596 |
. . . . . 6
⊢ ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐶 / 𝐵) < (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴)))) |
27 | 13, 16, 19, 26 | syl3an 1360 |
. . . . 5
⊢ (((𝐶 ∈ ℝ ∧ 0 <
𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐶 / 𝐵) < (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴)))) |
28 | 27 | 3coml 1264 |
. . . 4
⊢ (((𝐵 ∈ ℝ ∧ 0 <
𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 / 𝐵) < (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴)))) |
29 | 11, 28 | bitr4d 270 |
. . 3
⊢ (((𝐵 ∈ ℝ ∧ 0 <
𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴))) |
30 | 29 | 3com12 1261 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴))) |
31 | 2, 30 | bitrd 267 |
1
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴))) |