MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdiv2 Structured version   Visualization version   GIF version

Theorem ltdiv2 10788
Description: Division of a positive number by both sides of 'less than'. (Contributed by NM, 27-Apr-2005.)
Assertion
Ref Expression
ltdiv2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴)))

Proof of Theorem ltdiv2
StepHypRef Expression
1 ltrec 10784 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴)))
213adant3 1074 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴)))
3 gt0ne0 10372 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
4 rereccl 10622 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℝ)
53, 4syldan 486 . . . . 5 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (1 / 𝐵) ∈ ℝ)
6 gt0ne0 10372 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
7 rereccl 10622 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ)
86, 7syldan 486 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
9 ltmul2 10753 . . . . . 6 (((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴))))
108, 9syl3an2 1352 . . . . 5 (((1 / 𝐵) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴))))
115, 10syl3an1 1351 . . . 4 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴))))
12 recn 9905 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
1312adantr 480 . . . . . 6 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ∈ ℂ)
14 recn 9905 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
1514adantr 480 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ∈ ℂ)
1615, 3jca 553 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
17 recn 9905 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1817adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
1918, 6jca 553 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
20 divrec 10580 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
21203expb 1258 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
22213adant3 1074 . . . . . . 7 ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
23 divrec 10580 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
24233expb 1258 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
25243adant2 1073 . . . . . . 7 ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
2622, 25breq12d 4596 . . . . . 6 ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐶 / 𝐵) < (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴))))
2713, 16, 19, 26syl3an 1360 . . . . 5 (((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐶 / 𝐵) < (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴))))
28273coml 1264 . . . 4 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 / 𝐵) < (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴))))
2911, 28bitr4d 270 . . 3 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴)))
30293com12 1261 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴)))
312, 30bitrd 267 1 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953   / cdiv 10563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564
This theorem is referenced by:  ltdiv2d  11771  sin01gt0  14759  sincos6thpi  24071  tanord1  24087  basellem1  24607  perfectlem2  24755  bposlem6  24814  dchrisum0flblem2  24998  pntpbnd1a  25074  pntlemr  25091  stoweidlem42  38935
  Copyright terms: Public domain W3C validator