Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano2nn Structured version   Visualization version   GIF version

Theorem peano2nn 10909
 Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano2nn (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)

Proof of Theorem peano2nn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 7417 . . . 4 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω
2 fvelrnb 6153 . . . 4 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω → (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴))
31, 2ax-mp 5 . . 3 (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴)
4 ovex 6577 . . . . . . 7 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V
5 eqid 2610 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
6 oveq1 6556 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 + 1) = (𝑥 + 1))
7 oveq1 6556 . . . . . . . 8 (𝑧 = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) → (𝑧 + 1) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1))
85, 6, 7frsucmpt2 7422 . . . . . . 7 ((𝑦 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1))
94, 8mpan2 703 . . . . . 6 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1))
10 peano2 6978 . . . . . . . 8 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
11 fnfvelrn 6264 . . . . . . . 8 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω ∧ suc 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω))
121, 10, 11sylancr 694 . . . . . . 7 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω))
13 df-nn 10898 . . . . . . . 8 ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω)
14 df-ima 5051 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
1513, 14eqtri 2632 . . . . . . 7 ℕ = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
1612, 15syl6eleqr 2699 . . . . . 6 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ℕ)
179, 16eqeltrrd 2689 . . . . 5 (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ)
18 oveq1 6556 . . . . . 6 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) = (𝐴 + 1))
1918eleq1d 2672 . . . . 5 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ ↔ (𝐴 + 1) ∈ ℕ))
2017, 19syl5ibcom 234 . . . 4 (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ))
2120rexlimiv 3009 . . 3 (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ)
223, 21sylbi 206 . 2 (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) → (𝐴 + 1) ∈ ℕ)
2322, 15eleq2s 2706 1 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   = wceq 1475   ∈ wcel 1977  ∃wrex 2897  Vcvv 3173   ↦ cmpt 4643  ran crn 5039   ↾ cres 5040   “ cima 5041  suc csuc 5642   Fn wfn 5799  ‘cfv 5804  (class class class)co 6549  ωcom 6957  reccrdg 7392  1c1 9816   + caddc 9818  ℕcn 10897 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-nn 10898 This theorem is referenced by:  dfnn2  10910  dfnn3  10911  peano2nnd  10914  nnind  10915  nnaddcl  10919  2nn  11062  3nn  11063  4nn  11064  5nn  11065  6nn  11066  7nn  11067  8nn  11068  9nn  11069  10nnOLD  11070  nnunb  11165  nneo  11337  10nn  11390  fzonn0p1p1  12413  ser1const  12719  expp1  12729  facp1  12927  relexpsucnnl  13620  isercolllem1  14243  isercoll2  14247  climcndslem2  14421  climcnds  14422  harmonic  14430  trireciplem  14433  trirecip  14434  rpnnen2lem9  14790  sqrt2irr  14817  nno  14936  nnoddm1d2  14940  rplpwr  15114  prmind2  15236  eulerthlem2  15325  pcmpt  15434  pockthi  15449  prmreclem6  15463  dec5nprm  15608  mulgnnp1  17372  chfacfisf  20478  chfacfisfcpmat  20479  cayhamlem1  20490  1stcfb  21058  bcthlem3  22931  bcthlem4  22932  ovolunlem1a  23071  ovolicc2lem4  23095  voliunlem1  23125  volsup  23131  volsup2  23179  itg1climres  23287  mbfi1fseqlem5  23292  itg2monolem1  23323  itg2i1fseqle  23327  itg2i1fseq  23328  itg2i1fseq2  23329  itg2addlem  23331  itg2gt0  23333  itg2cnlem1  23334  aaliou3lem7  23908  emcllem1  24522  emcllem2  24523  emcllem3  24524  emcllem5  24526  emcllem6  24527  emcllem7  24528  zetacvg  24541  lgam1  24590  bclbnd  24805  bposlem5  24813  2sqlem10  24953  dchrisumlem2  24979  logdivbnd  25045  pntrsumo1  25054  pntrsumbnd  25055  wwlkext2clwwlk  26331  numclwwlk2lem1  26629  numclwlk2lem2f  26630  opsqrlem5  28387  opsqrlem6  28388  nnindf  28952  psgnfzto1st  29186  esumpmono  29468  fibp1  29790  rrvsum  29843  subfacp1lem6  30421  subfaclim  30424  bcprod  30877  bccolsum  30878  iprodgam  30881  faclimlem1  30882  faclimlem2  30883  faclim2  30887  nn0prpwlem  31487  mblfinlem2  32617  volsupnfl  32624  seqpo  32713  incsequz  32714  incsequz2  32715  geomcau  32725  heiborlem6  32785  bfplem1  32791  jm2.27dlem4  36597  nnsplit  38515  sumnnodd  38697  stoweidlem20  38913  wallispilem4  38961  wallispi2lem1  38964  wallispi2lem2  38965  stirlinglem4  38970  stirlinglem8  38974  stirlinglem11  38977  stirlinglem12  38978  stirlinglem13  38979  vonioolem2  39572  vonicclem2  39575  deccarry  39941  iccpartres  39956  iccelpart  39971  odz2prm2pw  40013  fmtnoprmfac1  40015  fmtnoprmfac2  40017  lighneallem4  40065  wwlksext2clwwlk  41231  av-numclwwlk2lem1  41532  av-numclwlk2lem2f  41533
 Copyright terms: Public domain W3C validator