MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcthlem3 Structured version   Visualization version   GIF version

Theorem bcthlem3 22931
Description: Lemma for bcth 22934. The limit point of the centers in the sequence is in the intersection of every ball in the sequence. (Contributed by Mario Carneiro, 7-Jan-2014.)
Hypotheses
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
bcthlem.4 (𝜑𝐷 ∈ (CMet‘𝑋))
bcthlem.5 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
bcthlem.6 (𝜑𝑀:ℕ⟶(Clsd‘𝐽))
bcthlem.7 (𝜑𝑅 ∈ ℝ+)
bcthlem.8 (𝜑𝐶𝑋)
bcthlem.9 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
bcthlem.10 (𝜑 → (𝑔‘1) = ⟨𝐶, 𝑅⟩)
bcthlem.11 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
Assertion
Ref Expression
bcthlem3 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝐴 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔𝐴)))
Distinct variable groups:   𝑘,𝑟,𝑥,𝑧,𝐴   𝐶,𝑟,𝑥   𝑔,𝑘,𝑟,𝑥,𝑧,𝐷   𝑔,𝐹,𝑘,𝑟,𝑥,𝑧   𝑔,𝐽,𝑘,𝑟,𝑥,𝑧   𝑔,𝑀,𝑘,𝑟,𝑥,𝑧   𝜑,𝑘,𝑟,𝑥,𝑧   𝑥,𝑅   𝑔,𝑋,𝑘,𝑟,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑔)   𝐴(𝑔)   𝐶(𝑧,𝑔,𝑘)   𝑅(𝑧,𝑔,𝑘,𝑟)

Proof of Theorem bcthlem3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 bcthlem.11 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
2 oveq1 6556 . . . . . . . . . 10 (𝑘 = 𝐴 → (𝑘 + 1) = (𝐴 + 1))
32fveq2d 6107 . . . . . . . . 9 (𝑘 = 𝐴 → (𝑔‘(𝑘 + 1)) = (𝑔‘(𝐴 + 1)))
4 id 22 . . . . . . . . . 10 (𝑘 = 𝐴𝑘 = 𝐴)
5 fveq2 6103 . . . . . . . . . 10 (𝑘 = 𝐴 → (𝑔𝑘) = (𝑔𝐴))
64, 5oveq12d 6567 . . . . . . . . 9 (𝑘 = 𝐴 → (𝑘𝐹(𝑔𝑘)) = (𝐴𝐹(𝑔𝐴)))
73, 6eleq12d 2682 . . . . . . . 8 (𝑘 = 𝐴 → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ↔ (𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔𝐴))))
87rspccva 3281 . . . . . . 7 ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ∧ 𝐴 ∈ ℕ) → (𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔𝐴)))
91, 8sylan 487 . . . . . 6 ((𝜑𝐴 ∈ ℕ) → (𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔𝐴)))
10 bcthlem.9 . . . . . . . 8 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
1110ffvelrnda 6267 . . . . . . 7 ((𝜑𝐴 ∈ ℕ) → (𝑔𝐴) ∈ (𝑋 × ℝ+))
12 bcth.2 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
13 bcthlem.4 . . . . . . . . 9 (𝜑𝐷 ∈ (CMet‘𝑋))
14 bcthlem.5 . . . . . . . . 9 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
1512, 13, 14bcthlem1 22929 . . . . . . . 8 ((𝜑 ∧ (𝐴 ∈ ℕ ∧ (𝑔𝐴) ∈ (𝑋 × ℝ+))) → ((𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔𝐴)) ↔ ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝐴)) ∖ (𝑀𝐴)))))
1615expr 641 . . . . . . 7 ((𝜑𝐴 ∈ ℕ) → ((𝑔𝐴) ∈ (𝑋 × ℝ+) → ((𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔𝐴)) ↔ ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝐴)) ∖ (𝑀𝐴))))))
1711, 16mpd 15 . . . . . 6 ((𝜑𝐴 ∈ ℕ) → ((𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔𝐴)) ↔ ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝐴)) ∖ (𝑀𝐴)))))
189, 17mpbid 221 . . . . 5 ((𝜑𝐴 ∈ ℕ) → ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝐴)) ∖ (𝑀𝐴))))
1918simp3d 1068 . . . 4 ((𝜑𝐴 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝐴)) ∖ (𝑀𝐴)))
2019difss2d 3702 . . 3 ((𝜑𝐴 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔𝐴)))
21203adant2 1073 . 2 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝐴 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔𝐴)))
22 peano2nn 10909 . . 3 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
23 cmetmet 22892 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
24 metxmet 21949 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2513, 23, 243syl 18 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
26 bcthlem.6 . . . . 5 (𝜑𝑀:ℕ⟶(Clsd‘𝐽))
27 bcthlem.7 . . . . 5 (𝜑𝑅 ∈ ℝ+)
28 bcthlem.8 . . . . 5 (𝜑𝐶𝑋)
29 bcthlem.10 . . . . 5 (𝜑 → (𝑔‘1) = ⟨𝐶, 𝑅⟩)
3012, 13, 14, 26, 27, 28, 10, 29, 1bcthlem2 22930 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
3125, 10, 30, 12caublcls 22915 . . 3 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥 ∧ (𝐴 + 1) ∈ ℕ) → 𝑥 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))))
3222, 31syl3an3 1353 . 2 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝐴 ∈ ℕ) → 𝑥 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))))
3321, 32sseldd 3569 1 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝐴 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  cdif 3537  wss 3540  cop 4131   class class class wbr 4583  {copab 4642   × cxp 5036  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  1c1 9816   + caddc 9818   < clt 9953   / cdiv 10563  cn 10897  +crp 11708  ∞Metcxmt 19552  Metcme 19553  ballcbl 19554  MetOpencmopn 19557  Clsdccld 20630  clsccl 20632  𝑡clm 20840  CMetcms 22860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635  df-lm 20843  df-cmet 22863
This theorem is referenced by:  bcthlem4  22932
  Copyright terms: Public domain W3C validator