Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem7 Structured version   Visualization version   GIF version

Theorem aaliou3lem7 23908
 Description: Lemma for aaliou3 23910. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
aaliou3lem.d 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
aaliou3lem.e 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
Assertion
Ref Expression
aaliou3lem7 (𝐴 ∈ ℕ → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
Distinct variable groups:   𝑎,𝑏,𝑐   𝐹,𝑏,𝑐   𝐿,𝑐   𝐴,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐹(𝑎)   𝐻(𝑎,𝑏,𝑐)   𝐿(𝑎,𝑏)

Proof of Theorem aaliou3lem7
StepHypRef Expression
1 peano2nn 10909 . . 3 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
2 eqid 2610 . . . 4 (𝑐 ∈ (ℤ‘(𝐴 + 1)) ↦ ((2↑-(!‘(𝐴 + 1))) · ((1 / 2)↑(𝑐 − (𝐴 + 1))))) = (𝑐 ∈ (ℤ‘(𝐴 + 1)) ↦ ((2↑-(!‘(𝐴 + 1))) · ((1 / 2)↑(𝑐 − (𝐴 + 1)))))
3 aaliou3lem.c . . . 4 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
42, 3aaliou3lem3 23903 . . 3 ((𝐴 + 1) ∈ ℕ → (seq(𝐴 + 1)( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
5 3simpc 1053 . . 3 ((seq(𝐴 + 1)( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) → (Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
61, 4, 53syl 18 . 2 (𝐴 ∈ ℕ → (Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
7 nncn 10905 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
8 ax-1cn 9873 . . . . . . . . . . . 12 1 ∈ ℂ
9 pncan 10166 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
107, 8, 9sylancl 693 . . . . . . . . . . 11 (𝐴 ∈ ℕ → ((𝐴 + 1) − 1) = 𝐴)
1110oveq2d 6565 . . . . . . . . . 10 (𝐴 ∈ ℕ → (1...((𝐴 + 1) − 1)) = (1...𝐴))
1211sumeq1d 14279 . . . . . . . . 9 (𝐴 ∈ ℕ → Σ𝑏 ∈ (1...((𝐴 + 1) − 1))(𝐹𝑏) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
1312oveq1d 6564 . . . . . . . 8 (𝐴 ∈ ℕ → (Σ𝑏 ∈ (1...((𝐴 + 1) − 1))(𝐹𝑏) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)))
14 nnuz 11599 . . . . . . . . 9 ℕ = (ℤ‘1)
15 eqid 2610 . . . . . . . . 9 (ℤ‘(𝐴 + 1)) = (ℤ‘(𝐴 + 1))
16 eqidd 2611 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (𝐹𝑏) = (𝐹𝑏))
17 fveq2 6103 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (!‘𝑎) = (!‘𝑏))
1817negeqd 10154 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → -(!‘𝑎) = -(!‘𝑏))
1918oveq2d 6565 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (2↑-(!‘𝑎)) = (2↑-(!‘𝑏)))
20 ovex 6577 . . . . . . . . . . . 12 (2↑-(!‘𝑏)) ∈ V
2119, 3, 20fvmpt 6191 . . . . . . . . . . 11 (𝑏 ∈ ℕ → (𝐹𝑏) = (2↑-(!‘𝑏)))
22 2rp 11713 . . . . . . . . . . . . 13 2 ∈ ℝ+
23 nnnn0 11176 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℕ → 𝑏 ∈ ℕ0)
24 faccl 12932 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℕ0 → (!‘𝑏) ∈ ℕ)
2523, 24syl 17 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℕ → (!‘𝑏) ∈ ℕ)
2625nnzd 11357 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ → (!‘𝑏) ∈ ℤ)
2726znegcld 11360 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → -(!‘𝑏) ∈ ℤ)
28 rpexpcl 12741 . . . . . . . . . . . . 13 ((2 ∈ ℝ+ ∧ -(!‘𝑏) ∈ ℤ) → (2↑-(!‘𝑏)) ∈ ℝ+)
2922, 27, 28sylancr 694 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → (2↑-(!‘𝑏)) ∈ ℝ+)
3029rpcnd 11750 . . . . . . . . . . 11 (𝑏 ∈ ℕ → (2↑-(!‘𝑏)) ∈ ℂ)
3121, 30eqeltrd 2688 . . . . . . . . . 10 (𝑏 ∈ ℕ → (𝐹𝑏) ∈ ℂ)
3231adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (𝐹𝑏) ∈ ℂ)
33 1nn 10908 . . . . . . . . . 10 1 ∈ ℕ
34 eqid 2610 . . . . . . . . . . . 12 (𝑐 ∈ (ℤ‘1) ↦ ((2↑-(!‘1)) · ((1 / 2)↑(𝑐 − 1)))) = (𝑐 ∈ (ℤ‘1) ↦ ((2↑-(!‘1)) · ((1 / 2)↑(𝑐 − 1))))
3534, 3aaliou3lem3 23903 . . . . . . . . . . 11 (1 ∈ ℕ → (seq1( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏) ≤ (2 · (2↑-(!‘1)))))
3635simp1d 1066 . . . . . . . . . 10 (1 ∈ ℕ → seq1( + , 𝐹) ∈ dom ⇝ )
3733, 36mp1i 13 . . . . . . . . 9 (𝐴 ∈ ℕ → seq1( + , 𝐹) ∈ dom ⇝ )
3814, 15, 1, 16, 32, 37isumsplit 14411 . . . . . . . 8 (𝐴 ∈ ℕ → Σ𝑏 ∈ ℕ (𝐹𝑏) = (Σ𝑏 ∈ (1...((𝐴 + 1) − 1))(𝐹𝑏) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)))
39 oveq2 6557 . . . . . . . . . . 11 (𝑐 = 𝐴 → (1...𝑐) = (1...𝐴))
4039sumeq1d 14279 . . . . . . . . . 10 (𝑐 = 𝐴 → Σ𝑏 ∈ (1...𝑐)(𝐹𝑏) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
41 aaliou3lem.e . . . . . . . . . 10 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
42 sumex 14266 . . . . . . . . . 10 Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) ∈ V
4340, 41, 42fvmpt 6191 . . . . . . . . 9 (𝐴 ∈ ℕ → (𝐻𝐴) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
4443oveq1d 6564 . . . . . . . 8 (𝐴 ∈ ℕ → ((𝐻𝐴) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)))
4513, 38, 443eqtr4rd 2655 . . . . . . 7 (𝐴 ∈ ℕ → ((𝐻𝐴) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = Σ𝑏 ∈ ℕ (𝐹𝑏))
46 aaliou3lem.d . . . . . . 7 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
4745, 46syl6eqr 2662 . . . . . 6 (𝐴 ∈ ℕ → ((𝐻𝐴) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = 𝐿)
483, 46, 41aaliou3lem4 23905 . . . . . . . . 9 𝐿 ∈ ℝ
4948recni 9931 . . . . . . . 8 𝐿 ∈ ℂ
5049a1i 11 . . . . . . 7 (𝐴 ∈ ℕ → 𝐿 ∈ ℂ)
513, 46, 41aaliou3lem5 23906 . . . . . . . 8 (𝐴 ∈ ℕ → (𝐻𝐴) ∈ ℝ)
5251recnd 9947 . . . . . . 7 (𝐴 ∈ ℕ → (𝐻𝐴) ∈ ℂ)
534simp2d 1067 . . . . . . . . 9 ((𝐴 + 1) ∈ ℕ → Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+)
541, 53syl 17 . . . . . . . 8 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+)
5554rpcnd 11750 . . . . . . 7 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℂ)
5650, 52, 55subaddd 10289 . . . . . 6 (𝐴 ∈ ℕ → ((𝐿 − (𝐻𝐴)) = Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ↔ ((𝐻𝐴) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = 𝐿))
5747, 56mpbird 246 . . . . 5 (𝐴 ∈ ℕ → (𝐿 − (𝐻𝐴)) = Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏))
5857eqcomd 2616 . . . 4 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) = (𝐿 − (𝐻𝐴)))
59 eleq1 2676 . . . . 5 𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) = (𝐿 − (𝐻𝐴)) → (Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ↔ (𝐿 − (𝐻𝐴)) ∈ ℝ+))
60 breq1 4586 . . . . 5 𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) = (𝐿 − (𝐻𝐴)) → (Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1)))) ↔ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
6159, 60anbi12d 743 . . . 4 𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) = (𝐿 − (𝐻𝐴)) → ((Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) ↔ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))))
6258, 61syl 17 . . 3 (𝐴 ∈ ℕ → ((Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) ↔ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))))
6351adantr 480 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐻𝐴) ∈ ℝ)
64 simprl 790 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐿 − (𝐻𝐴)) ∈ ℝ+)
65 difrp 11744 . . . . . . . 8 (((𝐻𝐴) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝐻𝐴) < 𝐿 ↔ (𝐿 − (𝐻𝐴)) ∈ ℝ+))
6663, 48, 65sylancl 693 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) < 𝐿 ↔ (𝐿 − (𝐻𝐴)) ∈ ℝ+))
6764, 66mpbird 246 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐻𝐴) < 𝐿)
6863, 67ltned 10052 . . . . 5 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐻𝐴) ≠ 𝐿)
69 nnnn0 11176 . . . . . . . . . . . . . . 15 ((𝐴 + 1) ∈ ℕ → (𝐴 + 1) ∈ ℕ0)
70 faccl 12932 . . . . . . . . . . . . . . 15 ((𝐴 + 1) ∈ ℕ0 → (!‘(𝐴 + 1)) ∈ ℕ)
711, 69, 703syl 18 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → (!‘(𝐴 + 1)) ∈ ℕ)
7271nnzd 11357 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → (!‘(𝐴 + 1)) ∈ ℤ)
7372znegcld 11360 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → -(!‘(𝐴 + 1)) ∈ ℤ)
74 rpexpcl 12741 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ -(!‘(𝐴 + 1)) ∈ ℤ) → (2↑-(!‘(𝐴 + 1))) ∈ ℝ+)
7522, 73, 74sylancr 694 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (2↑-(!‘(𝐴 + 1))) ∈ ℝ+)
76 rpmulcl 11731 . . . . . . . . . . 11 ((2 ∈ ℝ+ ∧ (2↑-(!‘(𝐴 + 1))) ∈ ℝ+) → (2 · (2↑-(!‘(𝐴 + 1)))) ∈ ℝ+)
7722, 75, 76sylancr 694 . . . . . . . . . 10 (𝐴 ∈ ℕ → (2 · (2↑-(!‘(𝐴 + 1)))) ∈ ℝ+)
7877adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (2 · (2↑-(!‘(𝐴 + 1)))) ∈ ℝ+)
7978rpred 11748 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (2 · (2↑-(!‘(𝐴 + 1)))) ∈ ℝ)
8063, 79resubcld 10337 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) ∈ ℝ)
8148a1i 11 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → 𝐿 ∈ ℝ)
8263, 78ltsubrpd 11780 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) < (𝐻𝐴))
8380, 63, 81, 82, 67lttrd 10077 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) < 𝐿)
8480, 81, 83ltled 10064 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) ≤ 𝐿)
85 simprr 792 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))
8681, 63, 79lesubadd2d 10505 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))) ↔ 𝐿 ≤ ((𝐻𝐴) + (2 · (2↑-(!‘(𝐴 + 1)))))))
8785, 86mpbid 221 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → 𝐿 ≤ ((𝐻𝐴) + (2 · (2↑-(!‘(𝐴 + 1))))))
8881, 63, 79absdifled 14021 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))) ↔ (((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) ≤ 𝐿𝐿 ≤ ((𝐻𝐴) + (2 · (2↑-(!‘(𝐴 + 1))))))))
8984, 87, 88mpbir2and 959 . . . . 5 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))
9068, 89jca 553 . . . 4 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
9190ex 449 . . 3 (𝐴 ∈ ℕ → (((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))))
9262, 91sylbid 229 . 2 (𝐴 ∈ ℕ → ((Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))))
936, 92mpd 15 1 (𝐴 ∈ ℕ → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953   ≤ cle 9954   − cmin 10145  -cneg 10146   / cdiv 10563  ℕcn 10897  2c2 10947  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  ℝ+crp 11708  ...cfz 12197  seqcseq 12663  ↑cexp 12722  !cfa 12922  abscabs 13822   ⇝ cli 14063  Σcsu 14264 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ioc 12051  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265 This theorem is referenced by:  aaliou3lem9  23909
 Copyright terms: Public domain W3C validator