Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem6 Structured version   Visualization version   GIF version

Theorem emcllem6 24527
 Description: Lemma for emcl 24529. By the previous lemmas, 𝐹 and 𝐺 must approach a common limit, which is γ by definition. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
emcl.3 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
emcl.4 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
Assertion
Ref Expression
emcllem6 (𝐹 ⇝ γ ∧ 𝐺 ⇝ γ)
Distinct variable groups:   𝑚,𝐻   𝑚,𝑛,𝑇
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)   𝐻(𝑛)

Proof of Theorem emcllem6
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11599 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 11285 . . . . 5 (⊤ → 1 ∈ ℤ)
3 oveq2 6557 . . . . . . . . . 10 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
43oveq2d 6565 . . . . . . . . . . 11 (𝑛 = 𝑘 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑘)))
54fveq2d 6107 . . . . . . . . . 10 (𝑛 = 𝑘 → (log‘(1 + (1 / 𝑛))) = (log‘(1 + (1 / 𝑘))))
63, 5oveq12d 6567 . . . . . . . . 9 (𝑛 = 𝑘 → ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))) = ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))))
7 emcl.4 . . . . . . . . 9 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
8 ovex 6577 . . . . . . . . 9 ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) ∈ V
96, 7, 8fvmpt 6191 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑇𝑘) = ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))))
109adantl 481 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑇𝑘) = ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))))
11 nnrecre 10934 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
1211adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
13 1rp 11712 . . . . . . . . . . 11 1 ∈ ℝ+
14 nnrp 11718 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
1514rpreccld 11758 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
1615adantl 481 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+)
17 rpaddcl 11730 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ (1 / 𝑘) ∈ ℝ+) → (1 + (1 / 𝑘)) ∈ ℝ+)
1813, 16, 17sylancr 694 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℝ+)
1918relogcld 24173 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (log‘(1 + (1 / 𝑘))) ∈ ℝ)
2012, 19resubcld 10337 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) ∈ ℝ)
2120recnd 9947 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) ∈ ℂ)
22 emcl.1 . . . . . . . . . 10 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
23 emcl.2 . . . . . . . . . 10 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
24 emcl.3 . . . . . . . . . 10 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
2522, 23, 24, 7emcllem5 24526 . . . . . . . . 9 𝐺 = seq1( + , 𝑇)
2622, 23emcllem1 24522 . . . . . . . . . . . 12 (𝐹:ℕ⟶ℝ ∧ 𝐺:ℕ⟶ℝ)
2726simpri 477 . . . . . . . . . . 11 𝐺:ℕ⟶ℝ
2827a1i 11 . . . . . . . . . 10 (⊤ → 𝐺:ℕ⟶ℝ)
2922, 23emcllem2 24523 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1))))
3029simprd 478 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
3130adantl 481 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
32 1nn 10908 . . . . . . . . . . . 12 1 ∈ ℕ
3326simpli 473 . . . . . . . . . . . . 13 𝐹:ℕ⟶ℝ
3433ffvelrni 6266 . . . . . . . . . . . 12 (1 ∈ ℕ → (𝐹‘1) ∈ ℝ)
3532, 34ax-mp 5 . . . . . . . . . . 11 (𝐹‘1) ∈ ℝ
3627ffvelrni 6266 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐺𝑘) ∈ ℝ)
3736adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
3833ffvelrni 6266 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℝ)
3938adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
4035a1i 11 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹‘1) ∈ ℝ)
41 fvex 6113 . . . . . . . . . . . . . . . . . . 19 (log‘(1 + (1 / 𝑘))) ∈ V
425, 24, 41fvmpt 6191 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝐻𝑘) = (log‘(1 + (1 / 𝑘))))
4342adantl 481 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = (log‘(1 + (1 / 𝑘))))
4422, 23, 24emcllem3 24524 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
4544adantl 481 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
4643, 45eqtr3d 2646 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑘 ∈ ℕ) → (log‘(1 + (1 / 𝑘))) = ((𝐹𝑘) − (𝐺𝑘)))
47 1re 9918 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
48 readdcl 9898 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ) → (1 + (1 / 𝑘)) ∈ ℝ)
4947, 12, 48sylancr 694 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℝ)
50 ltaddrp 11743 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ+) → 1 < (1 + (1 / 𝑘)))
5147, 16, 50sylancr 694 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → 1 < (1 + (1 / 𝑘)))
5249, 51rplogcld 24179 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑘 ∈ ℕ) → (log‘(1 + (1 / 𝑘))) ∈ ℝ+)
5346, 52eqeltrrd 2689 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ+)
5453rpge0d 11752 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑘) − (𝐺𝑘)))
5539, 37subge0d 10496 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝑘) − (𝐺𝑘)) ↔ (𝐺𝑘) ≤ (𝐹𝑘)))
5654, 55mpbid 221 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐹𝑘))
57 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
5857breq1d 4593 . . . . . . . . . . . . . . 15 (𝑥 = 1 → ((𝐹𝑥) ≤ (𝐹‘1) ↔ (𝐹‘1) ≤ (𝐹‘1)))
59 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
6059breq1d 4593 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → ((𝐹𝑥) ≤ (𝐹‘1) ↔ (𝐹𝑘) ≤ (𝐹‘1)))
61 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
6261breq1d 4593 . . . . . . . . . . . . . . 15 (𝑥 = (𝑘 + 1) → ((𝐹𝑥) ≤ (𝐹‘1) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝐹‘1)))
6335leidi 10441 . . . . . . . . . . . . . . 15 (𝐹‘1) ≤ (𝐹‘1)
6429simpld 474 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
65 peano2nn 10909 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
6633ffvelrni 6266 . . . . . . . . . . . . . . . . . 18 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ ℝ)
6765, 66syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ ℝ)
6835a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝐹‘1) ∈ ℝ)
69 letr 10010 . . . . . . . . . . . . . . . . 17 (((𝐹‘(𝑘 + 1)) ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ ∧ (𝐹‘1) ∈ ℝ) → (((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝐹‘1)) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘1)))
7067, 38, 68, 69syl3anc 1318 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝐹‘1)) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘1)))
7164, 70mpand 707 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((𝐹𝑘) ≤ (𝐹‘1) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘1)))
7258, 60, 62, 60, 63, 71nnind 10915 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐹𝑘) ≤ (𝐹‘1))
7372adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ≤ (𝐹‘1))
7437, 39, 40, 56, 73letrd 10073 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐹‘1))
7574ralrimiva 2949 . . . . . . . . . . 11 (⊤ → ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ (𝐹‘1))
76 breq2 4587 . . . . . . . . . . . . 13 (𝑥 = (𝐹‘1) → ((𝐺𝑘) ≤ 𝑥 ↔ (𝐺𝑘) ≤ (𝐹‘1)))
7776ralbidv 2969 . . . . . . . . . . . 12 (𝑥 = (𝐹‘1) → (∀𝑘 ∈ ℕ (𝐺𝑘) ≤ 𝑥 ↔ ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ (𝐹‘1)))
7877rspcev 3282 . . . . . . . . . . 11 (((𝐹‘1) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ (𝐹‘1)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ 𝑥)
7935, 75, 78sylancr 694 . . . . . . . . . 10 (⊤ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ 𝑥)
801, 2, 28, 31, 79climsup 14248 . . . . . . . . 9 (⊤ → 𝐺 ⇝ sup(ran 𝐺, ℝ, < ))
8125, 80syl5eqbrr 4619 . . . . . . . 8 (⊤ → seq1( + , 𝑇) ⇝ sup(ran 𝐺, ℝ, < ))
82 climrel 14071 . . . . . . . . 9 Rel ⇝
8382releldmi 5283 . . . . . . . 8 (seq1( + , 𝑇) ⇝ sup(ran 𝐺, ℝ, < ) → seq1( + , 𝑇) ∈ dom ⇝ )
8481, 83syl 17 . . . . . . 7 (⊤ → seq1( + , 𝑇) ∈ dom ⇝ )
851, 2, 10, 21, 84isumclim2 14331 . . . . . 6 (⊤ → seq1( + , 𝑇) ⇝ Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))))
86 df-em 24519 . . . . . 6 γ = Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘))))
8785, 25, 863brtr4g 4617 . . . . 5 (⊤ → 𝐺 ⇝ γ)
88 nnex 10903 . . . . . . . 8 ℕ ∈ V
8988mptex 6390 . . . . . . 7 (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) ∈ V
9022, 89eqeltri 2684 . . . . . 6 𝐹 ∈ V
9190a1i 11 . . . . 5 (⊤ → 𝐹 ∈ V)
9222, 23, 24emcllem4 24525 . . . . . 6 𝐻 ⇝ 0
9392a1i 11 . . . . 5 (⊤ → 𝐻 ⇝ 0)
9437recnd 9947 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
9539, 37resubcld 10337 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ)
9645, 95eqeltrd 2688 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℝ)
9796recnd 9947 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℂ)
9845oveq2d 6565 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) + (𝐻𝑘)) = ((𝐺𝑘) + ((𝐹𝑘) − (𝐺𝑘))))
9939recnd 9947 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
10094, 99pncan3d 10274 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) + ((𝐹𝑘) − (𝐺𝑘))) = (𝐹𝑘))
10198, 100eqtr2d 2645 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = ((𝐺𝑘) + (𝐻𝑘)))
1021, 2, 87, 91, 93, 94, 97, 101climadd 14210 . . . 4 (⊤ → 𝐹 ⇝ (γ + 0))
10387trud 1484 . . . . . 6 𝐺 ⇝ γ
104 climcl 14078 . . . . . 6 (𝐺 ⇝ γ → γ ∈ ℂ)
105103, 104ax-mp 5 . . . . 5 γ ∈ ℂ
106105addid1i 10102 . . . 4 (γ + 0) = γ
107102, 106syl6breq 4624 . . 3 (⊤ → 𝐹 ⇝ γ)
108107trud 1484 . 2 𝐹 ⇝ γ
109108, 103pm3.2i 470 1 (𝐹 ⇝ γ ∧ 𝐺 ⇝ γ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475  ⊤wtru 1476   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  Vcvv 3173   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ran crn 5039  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  supcsup 8229  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953   ≤ cle 9954   − cmin 10145   / cdiv 10563  ℕcn 10897  ℝ+crp 11708  ...cfz 12197  seqcseq 12663   ⇝ cli 14063  Σcsu 14264  logclog 24105  γcem 24518 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-em 24519 This theorem is referenced by:  emcllem7  24528
 Copyright terms: Public domain W3C validator