Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  av-numclwlk2lem2f Structured version   Visualization version   GIF version

Theorem av-numclwlk2lem2f 41533
Description: 𝑅 is a function mapping the "closed (n+2)-walks v(0) ... v(n-2) v(n-1) v(n) v(n+1) v(n+2) starting at 𝑋 = v(0) = v(n+2) with v(n) =/= X" to the words representing the prefix v(0) ... v(n-2) v(n-1) v(n) of the walk. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Revised by AV, 31-May-2021.)
Hypotheses
Ref Expression
av-numclwwlk.v 𝑉 = (Vtx‘𝐺)
av-numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
av-numclwwlk.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
av-numclwwlk.h 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
av-numclwwlk.r 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 substr ⟨0, (𝑁 + 1)⟩))
Assertion
Ref Expression
av-numclwlk2lem2f ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))⟶(𝑋𝑄𝑁))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑉   𝑥,𝐺,𝑤   𝑥,𝐻   𝑥,𝑁   𝑥,𝑄   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝑅(𝑥,𝑤,𝑣,𝑛)   𝐹(𝑥,𝑤,𝑣,𝑛)   𝐻(𝑤,𝑣,𝑛)

Proof of Theorem av-numclwlk2lem2f
StepHypRef Expression
1 id 22 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
2 2nn 11062 . . . . . . . . . . 11 2 ∈ ℕ
32a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℕ)
41, 3nnaddcld 10944 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℕ)
54anim2i 591 . . . . . . . 8 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ))
653adant1 1072 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ))
7 av-numclwwlk.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
8 av-numclwwlk.q . . . . . . . . 9 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
9 av-numclwwlk.f . . . . . . . . 9 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
10 av-numclwwlk.h . . . . . . . . 9 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
117, 8, 9, 10av-numclwwlkovh 41531 . . . . . . . 8 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
1211eleq2d 2673 . . . . . . 7 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
136, 12syl 17 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
14 fveq1 6102 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0))
1514eqeq1d 2612 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤‘0) = 𝑋 ↔ (𝑥‘0) = 𝑋))
16 fveq1 6102 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘((𝑁 + 2) − 2)) = (𝑥‘((𝑁 + 2) − 2)))
1716, 14neeq12d 2843 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0) ↔ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))
1815, 17anbi12d 743 . . . . . . 7 (𝑤 = 𝑥 → (((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0)) ↔ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))
1918elrab 3331 . . . . . 6 (𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))} ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))
2013, 19syl6bb 275 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))))
21 peano2nn 10909 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
22 nnz 11276 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
23 2z 11286 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
2423a1i 11 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 2 ∈ ℤ)
2522, 24zaddcld 11362 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℤ)
26 uzid 11578 . . . . . . . . . . . . . 14 ((𝑁 + 2) ∈ ℤ → (𝑁 + 2) ∈ (ℤ‘(𝑁 + 2)))
2725, 26syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘(𝑁 + 2)))
28 nncn 10905 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
29 1cnd 9935 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 1 ∈ ℂ)
3028, 29, 29addassd 9941 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
31 1p1e2 11011 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
3231a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (1 + 1) = 2)
3332oveq2d 6565 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (𝑁 + (1 + 1)) = (𝑁 + 2))
3430, 33eqtrd 2644 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + 2))
3534fveq2d 6107 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (ℤ‘((𝑁 + 1) + 1)) = (ℤ‘(𝑁 + 2)))
3627, 35eleqtrrd 2691 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1)))
3721, 36jca 553 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))))
38373ad2ant3 1077 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))))
3938adantr 480 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))))
40 simprl 790 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → 𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺))
41 wwlksubclwwlks 41232 . . . . . . . . 9 (((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))) → (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalkSN 𝐺)))
4239, 40, 41sylc 63 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalkSN 𝐺))
43 pncan1 10333 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
4443eqcomd 2616 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → 𝑁 = ((𝑁 + 1) − 1))
4528, 44syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 = ((𝑁 + 1) − 1))
4645oveq1d 6564 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 WWalkSN 𝐺) = (((𝑁 + 1) − 1) WWalkSN 𝐺))
4746eleq2d 2673 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺) ↔ (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalkSN 𝐺)))
48473ad2ant3 1077 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺) ↔ (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalkSN 𝐺)))
4948adantr 480 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺) ↔ (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalkSN 𝐺)))
5042, 49mpbird 246 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺))
517clwwlknbp0 41192 . . . . . . . . . . . 12 (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) → ((𝐺 ∈ V ∧ (𝑁 + 2) ∈ ℕ) ∧ (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = (𝑁 + 2))))
52 simprl 790 . . . . . . . . . . . . . . . 16 (((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (𝑥‘0) = 𝑋)
53 simprr 792 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → 𝑥 ∈ Word 𝑉)
54 nnnn0 11176 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
55 peano2nn0 11210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
5654, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
57 nnre 10904 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
5857lep1d 10834 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → 𝑁 ≤ (𝑁 + 1))
59 elfz2nn0 12300 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ (0...(𝑁 + 1)) ↔ (𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0𝑁 ≤ (𝑁 + 1)))
6054, 56, 58, 59syl3anbrc 1239 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ∈ (0...(𝑁 + 1)))
61 2cnd 10970 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → 2 ∈ ℂ)
62 addsubass 10170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 2) − 1) = (𝑁 + (2 − 1)))
63 2m1e1 11012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (2 − 1) = 1
6463oveq2i 6560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 + (2 − 1)) = (𝑁 + 1)
6562, 64syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 2) − 1) = (𝑁 + 1))
6628, 61, 29, 65syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → ((𝑁 + 2) − 1) = (𝑁 + 1))
6766oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → (0...((𝑁 + 2) − 1)) = (0...(𝑁 + 1)))
6860, 67eleqtrrd 2691 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 𝑁 ∈ (0...((𝑁 + 2) − 1)))
69 elfzp1b 12286 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℤ ∧ (𝑁 + 2) ∈ ℤ) → (𝑁 ∈ (0...((𝑁 + 2) − 1)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
7022, 25, 69syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → (𝑁 ∈ (0...((𝑁 + 2) − 1)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
7168, 70mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (1...(𝑁 + 2)))
7271adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑁 + 1) ∈ (1...(𝑁 + 2)))
73 oveq2 6557 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((#‘𝑥) = (𝑁 + 2) → (1...(#‘𝑥)) = (1...(𝑁 + 2)))
7473eleq2d 2673 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝑥) = (𝑁 + 2) → ((𝑁 + 1) ∈ (1...(#‘𝑥)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
7574ad2antrl 760 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ((𝑁 + 1) ∈ (1...(#‘𝑥)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
7672, 75mpbird 246 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑁 + 1) ∈ (1...(#‘𝑥)))
77 swrd0fv0 13292 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (1...(#‘𝑥))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0))
7853, 76, 77syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0))
7978ex 449 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0)))
8079adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑋𝑉𝑁 ∈ ℕ) → (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0)))
8180impcom 445 . . . . . . . . . . . . . . . . . . 19 ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0))
8281ad2antrl 760 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0))
83 simpl 472 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (𝑥‘0) = 𝑋)
8482, 83eqtrd 2644 . . . . . . . . . . . . . . . . 17 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋)
85 swrd0fvlsw 13295 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (1...(#‘𝑥))) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) = (𝑥‘((𝑁 + 1) − 1)))
8653, 76, 85syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) = (𝑥‘((𝑁 + 1) − 1)))
8728, 43syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
8828, 61pncand 10272 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℕ → ((𝑁 + 2) − 2) = 𝑁)
8987, 88eqtr4d 2647 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = ((𝑁 + 2) − 2))
9089fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → (𝑥‘((𝑁 + 1) − 1)) = (𝑥‘((𝑁 + 2) − 2)))
9190adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑥‘((𝑁 + 1) − 1)) = (𝑥‘((𝑁 + 2) − 2)))
9286, 91eqtr2d 2645 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑥‘((𝑁 + 2) − 2)) = ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)))
9392ex 449 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥‘((𝑁 + 2) − 2)) = ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩))))
9493adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋𝑉𝑁 ∈ ℕ) → (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥‘((𝑁 + 2) − 2)) = ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩))))
9594impcom 445 . . . . . . . . . . . . . . . . . . . . . . 23 ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (𝑥‘((𝑁 + 2) − 2)) = ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)))
9695neeq1d 2841 . . . . . . . . . . . . . . . . . . . . . 22 ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ((𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0) ↔ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
9796biimpcd 238 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0) → ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
9897adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
9998impcom 445 . . . . . . . . . . . . . . . . . . 19 (((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0))
10099adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0))
101 neeq2 2845 . . . . . . . . . . . . . . . . . . . 20 (𝑋 = (𝑥‘0) → (( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋 ↔ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
102101eqcoms 2618 . . . . . . . . . . . . . . . . . . 19 ((𝑥‘0) = 𝑋 → (( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋 ↔ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
103102adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋 ↔ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
104100, 103mpbird 246 . . . . . . . . . . . . . . . . 17 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)
10584, 104jca 553 . . . . . . . . . . . . . . . 16 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))
10652, 105mpancom 700 . . . . . . . . . . . . . . 15 (((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))
107106exp31 628 . . . . . . . . . . . . . 14 (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
108107com23 84 . . . . . . . . . . . . 13 (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
109108ancoms 468 . . . . . . . . . . . 12 ((𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = (𝑁 + 2)) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
11051, 109simpl2im 656 . . . . . . . . . . 11 (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
111110imp 444 . . . . . . . . . 10 ((𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
112111com12 32 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
1131123adant1 1072 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
114113imp 444 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))
11550, 114jca 553 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
116115ex 449 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
11720, 116sylbid 229 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
118117imp 444 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
119 3simpc 1053 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉𝑁 ∈ ℕ))
120119adantr 480 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑋𝑉𝑁 ∈ ℕ))
1217, 8av-numclwwlkovq 41529 . . . . . 6 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)})
122120, 121syl 17 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)})
123122eleq2d 2673 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁) ↔ (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ {𝑤 ∈ (𝑁 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)}))
124 fveq1 6102 . . . . . . 7 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → (𝑤‘0) = ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0))
125124eqeq1d 2612 . . . . . 6 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → ((𝑤‘0) = 𝑋 ↔ ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋))
126 fveq2 6103 . . . . . . 7 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → ( lastS ‘𝑤) = ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)))
127126neeq1d 2841 . . . . . 6 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → (( lastS ‘𝑤) ≠ 𝑋 ↔ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))
128125, 127anbi12d 743 . . . . 5 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → (((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋) ↔ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
129128elrab 3331 . . . 4 ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ {𝑤 ∈ (𝑁 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)} ↔ ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
130123, 129syl6bb 275 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁) ↔ ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
131118, 130mpbird 246 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁))
132 av-numclwwlk.r . 2 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 substr ⟨0, (𝑁 + 1)⟩))
133131, 132fmptd 6292 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))⟶(𝑋𝑄𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  {crab 2900  Vcvv 3173  cop 4131   class class class wbr 4583  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  cc 9813  0cc0 9815  1c1 9816   + caddc 9818  cle 9954  cmin 10145  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  #chash 12979  Word cword 13146   lastS clsw 13147   substr csubstr 13150  Vtxcvtx 25673   WWalkSN cwwlksn 41029   ClWWalkSN cclwwlksn 41184   FriendGraph cfrgr 41428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-lsw 13155  df-substr 13158  df-wwlks 41033  df-wwlksn 41034  df-clwwlks 41185  df-clwwlksn 41186
This theorem is referenced by:  av-numclwlk2lem2f1o  41535
  Copyright terms: Public domain W3C validator