MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcthlem4 Structured version   Visualization version   GIF version

Theorem bcthlem4 22932
Description: Lemma for bcth 22934. Given any open ball (𝐶(ball‘𝐷)𝑅) as starting point (and in particular, a ball in int( ran 𝑀)), the limit point 𝑥 of the centers of the induced sequence of balls 𝑔 is outside ran 𝑀. Note that a set 𝐴 has empty interior iff every nonempty open set 𝑈 contains points outside 𝐴, i.e. (𝑈𝐴) ≠ ∅. (Contributed by Mario Carneiro, 7-Jan-2014.)
Hypotheses
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
bcthlem.4 (𝜑𝐷 ∈ (CMet‘𝑋))
bcthlem.5 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
bcthlem.6 (𝜑𝑀:ℕ⟶(Clsd‘𝐽))
bcthlem.7 (𝜑𝑅 ∈ ℝ+)
bcthlem.8 (𝜑𝐶𝑋)
bcthlem.9 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
bcthlem.10 (𝜑 → (𝑔‘1) = ⟨𝐶, 𝑅⟩)
bcthlem.11 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
Assertion
Ref Expression
bcthlem4 (𝜑 → ((𝐶(ball‘𝐷)𝑅) ∖ ran 𝑀) ≠ ∅)
Distinct variable groups:   𝑘,𝑟,𝑥,𝑧   𝐶,𝑟,𝑥   𝑔,𝑘,𝑟,𝑥,𝑧,𝐷   𝑔,𝐹,𝑘,𝑟,𝑥,𝑧   𝑔,𝐽,𝑘,𝑟,𝑥,𝑧   𝑔,𝑀,𝑘,𝑟,𝑥,𝑧   𝜑,𝑘,𝑟,𝑥,𝑧   𝑥,𝑅   𝑔,𝑋,𝑘,𝑟,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑔)   𝐶(𝑧,𝑔,𝑘)   𝑅(𝑧,𝑔,𝑘,𝑟)

Proof of Theorem bcthlem4
Dummy variables 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcthlem.4 . . . 4 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 22892 . . . . . . 7 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
31, 2syl 17 . . . . . 6 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 21949 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
53, 4syl 17 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
6 bcthlem.9 . . . . 5 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
7 bcth.2 . . . . . 6 𝐽 = (MetOpen‘𝐷)
8 bcthlem.5 . . . . . 6 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
9 bcthlem.6 . . . . . 6 (𝜑𝑀:ℕ⟶(Clsd‘𝐽))
10 bcthlem.7 . . . . . 6 (𝜑𝑅 ∈ ℝ+)
11 bcthlem.8 . . . . . 6 (𝜑𝐶𝑋)
12 bcthlem.10 . . . . . 6 (𝜑 → (𝑔‘1) = ⟨𝐶, 𝑅⟩)
13 bcthlem.11 . . . . . 6 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
147, 1, 8, 9, 10, 11, 6, 12, 13bcthlem2 22930 . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
15 elrp 11710 . . . . . . . . 9 (𝑟 ∈ ℝ+ ↔ (𝑟 ∈ ℝ ∧ 0 < 𝑟))
16 nnrecl 11167 . . . . . . . . 9 ((𝑟 ∈ ℝ ∧ 0 < 𝑟) → ∃𝑚 ∈ ℕ (1 / 𝑚) < 𝑟)
1715, 16sylbi 206 . . . . . . . 8 (𝑟 ∈ ℝ+ → ∃𝑚 ∈ ℕ (1 / 𝑚) < 𝑟)
1817adantl 481 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → ∃𝑚 ∈ ℕ (1 / 𝑚) < 𝑟)
19 peano2nn 10909 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
2019adantl 481 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
21 oveq1 6556 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝑘 + 1) = (𝑚 + 1))
2221fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝑔‘(𝑘 + 1)) = (𝑔‘(𝑚 + 1)))
23 id 22 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚𝑘 = 𝑚)
24 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝑔𝑘) = (𝑔𝑚))
2523, 24oveq12d 6567 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝑘𝐹(𝑔𝑘)) = (𝑚𝐹(𝑔𝑚)))
2622, 25eleq12d 2682 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ↔ (𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚))))
2726rspccva 3281 . . . . . . . . . . . . . 14 ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ∧ 𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚)))
2813, 27sylan 487 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚)))
296ffvelrnda 6267 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (𝑔𝑚) ∈ (𝑋 × ℝ+))
307, 1, 8bcthlem1 22929 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑔𝑚) ∈ (𝑋 × ℝ+))) → ((𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚)) ↔ ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))))
3130expr 641 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((𝑔𝑚) ∈ (𝑋 × ℝ+) → ((𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚)) ↔ ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚))))))
3229, 31mpd 15 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((𝑔‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑔𝑚)) ↔ ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))))
3328, 32mpbid 221 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚))))
3433simp2d 1067 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚))
3534adantlr 747 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚))
3633simp1d 1066 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+))
37 xp2nd 7090 . . . . . . . . . . . . . 14 ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) → (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ+)
3836, 37syl 17 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ+)
3938rpred 11748 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ)
4039adantlr 747 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ)
41 nnrecre 10934 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℝ)
4241adantl 481 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (1 / 𝑚) ∈ ℝ)
43 rpre 11715 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
4443ad2antlr 759 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → 𝑟 ∈ ℝ)
45 lttr 9993 . . . . . . . . . . 11 (((2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ ∧ (1 / 𝑚) ∈ ℝ ∧ 𝑟 ∈ ℝ) → (((2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ (1 / 𝑚) < 𝑟) → (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟))
4640, 42, 44, 45syl3anc 1318 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (((2nd ‘(𝑔‘(𝑚 + 1))) < (1 / 𝑚) ∧ (1 / 𝑚) < 𝑟) → (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟))
4735, 46mpand 707 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → ((1 / 𝑚) < 𝑟 → (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟))
48 fveq2 6103 . . . . . . . . . . . 12 (𝑛 = (𝑚 + 1) → (𝑔𝑛) = (𝑔‘(𝑚 + 1)))
4948fveq2d 6107 . . . . . . . . . . 11 (𝑛 = (𝑚 + 1) → (2nd ‘(𝑔𝑛)) = (2nd ‘(𝑔‘(𝑚 + 1))))
5049breq1d 4593 . . . . . . . . . 10 (𝑛 = (𝑚 + 1) → ((2nd ‘(𝑔𝑛)) < 𝑟 ↔ (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟))
5150rspcev 3282 . . . . . . . . 9 (((𝑚 + 1) ∈ ℕ ∧ (2nd ‘(𝑔‘(𝑚 + 1))) < 𝑟) → ∃𝑛 ∈ ℕ (2nd ‘(𝑔𝑛)) < 𝑟)
5220, 47, 51syl6an 566 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → ((1 / 𝑚) < 𝑟 → ∃𝑛 ∈ ℕ (2nd ‘(𝑔𝑛)) < 𝑟))
5352rexlimdva 3013 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → (∃𝑚 ∈ ℕ (1 / 𝑚) < 𝑟 → ∃𝑛 ∈ ℕ (2nd ‘(𝑔𝑛)) < 𝑟))
5418, 53mpd 15 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → ∃𝑛 ∈ ℕ (2nd ‘(𝑔𝑛)) < 𝑟)
5554ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ (2nd ‘(𝑔𝑛)) < 𝑟)
565, 6, 14, 55caubl 22914 . . . 4 (𝜑 → (1st𝑔) ∈ (Cau‘𝐷))
577cmetcau 22895 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ (1st𝑔) ∈ (Cau‘𝐷)) → (1st𝑔) ∈ dom (⇝𝑡𝐽))
581, 56, 57syl2anc 691 . . 3 (𝜑 → (1st𝑔) ∈ dom (⇝𝑡𝐽))
59 fo1st 7079 . . . . . 6 1st :V–onto→V
60 fofun 6029 . . . . . 6 (1st :V–onto→V → Fun 1st )
6159, 60ax-mp 5 . . . . 5 Fun 1st
62 vex 3176 . . . . 5 𝑔 ∈ V
63 cofunexg 7023 . . . . 5 ((Fun 1st𝑔 ∈ V) → (1st𝑔) ∈ V)
6461, 62, 63mp2an 704 . . . 4 (1st𝑔) ∈ V
6564eldm 5243 . . 3 ((1st𝑔) ∈ dom (⇝𝑡𝐽) ↔ ∃𝑥(1st𝑔)(⇝𝑡𝐽)𝑥)
6658, 65sylib 207 . 2 (𝜑 → ∃𝑥(1st𝑔)(⇝𝑡𝐽)𝑥)
67 1nn 10908 . . . . . 6 1 ∈ ℕ
687, 1, 8, 9, 10, 11, 6, 12, 13bcthlem3 22931 . . . . . 6 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥 ∧ 1 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘1)))
6967, 68mp3an3 1405 . . . . 5 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘1)))
7012fveq2d 6107 . . . . . . 7 (𝜑 → ((ball‘𝐷)‘(𝑔‘1)) = ((ball‘𝐷)‘⟨𝐶, 𝑅⟩))
71 df-ov 6552 . . . . . . 7 (𝐶(ball‘𝐷)𝑅) = ((ball‘𝐷)‘⟨𝐶, 𝑅⟩)
7270, 71syl6eqr 2662 . . . . . 6 (𝜑 → ((ball‘𝐷)‘(𝑔‘1)) = (𝐶(ball‘𝐷)𝑅))
7372adantr 480 . . . . 5 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → ((ball‘𝐷)‘(𝑔‘1)) = (𝐶(ball‘𝐷)𝑅))
7469, 73eleqtrd 2690 . . . 4 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → 𝑥 ∈ (𝐶(ball‘𝐷)𝑅))
757mopntop 22055 . . . . . . . . . . . . . 14 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
765, 75syl 17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
7776adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝐽 ∈ Top)
785adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋))
79 xp1st 7089 . . . . . . . . . . . . . . 15 ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) → (1st ‘(𝑔‘(𝑚 + 1))) ∈ 𝑋)
8036, 79syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝑔‘(𝑚 + 1))) ∈ 𝑋)
8138rpxrd 11749 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ*)
82 blssm 22033 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑔‘(𝑚 + 1))) ∈ 𝑋 ∧ (2nd ‘(𝑔‘(𝑚 + 1))) ∈ ℝ*) → ((1st ‘(𝑔‘(𝑚 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑚 + 1)))) ⊆ 𝑋)
8378, 80, 81, 82syl3anc 1318 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝑔‘(𝑚 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑚 + 1)))) ⊆ 𝑋)
84 1st2nd2 7096 . . . . . . . . . . . . . . . 16 ((𝑔‘(𝑚 + 1)) ∈ (𝑋 × ℝ+) → (𝑔‘(𝑚 + 1)) = ⟨(1st ‘(𝑔‘(𝑚 + 1))), (2nd ‘(𝑔‘(𝑚 + 1)))⟩)
8536, 84syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) = ⟨(1st ‘(𝑔‘(𝑚 + 1))), (2nd ‘(𝑔‘(𝑚 + 1)))⟩)
8685fveq2d 6107 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) = ((ball‘𝐷)‘⟨(1st ‘(𝑔‘(𝑚 + 1))), (2nd ‘(𝑔‘(𝑚 + 1)))⟩))
87 df-ov 6552 . . . . . . . . . . . . . 14 ((1st ‘(𝑔‘(𝑚 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑚 + 1)))) = ((ball‘𝐷)‘⟨(1st ‘(𝑔‘(𝑚 + 1))), (2nd ‘(𝑔‘(𝑚 + 1)))⟩)
8886, 87syl6reqr 2663 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝑔‘(𝑚 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑚 + 1)))) = ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))))
897mopnuni 22056 . . . . . . . . . . . . . . 15 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
905, 89syl 17 . . . . . . . . . . . . . 14 (𝜑𝑋 = 𝐽)
9190adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → 𝑋 = 𝐽)
9283, 88, 913sstr3d 3610 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ 𝐽)
93 eqid 2610 . . . . . . . . . . . . 13 𝐽 = 𝐽
9493sscls 20670 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ 𝐽) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))))
9577, 92, 94syl2anc 691 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))))
9633simp3d 1068 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑚 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))
9795, 96sstrd 3578 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))
98973adant2 1073 . . . . . . . . 9 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝑚 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))) ⊆ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))
997, 1, 8, 9, 10, 11, 6, 12, 13bcthlem3 22931 . . . . . . . . . 10 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥 ∧ (𝑚 + 1) ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))))
10019, 99syl3an3 1353 . . . . . . . . 9 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝑚 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘(𝑚 + 1))))
10198, 100sseldd 3569 . . . . . . . 8 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝑚 ∈ ℕ) → 𝑥 ∈ (((ball‘𝐷)‘(𝑔𝑚)) ∖ (𝑀𝑚)))
102101eldifbd 3553 . . . . . . 7 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝑚 ∈ ℕ) → ¬ 𝑥 ∈ (𝑀𝑚))
1031023expa 1257 . . . . . 6 (((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) ∧ 𝑚 ∈ ℕ) → ¬ 𝑥 ∈ (𝑀𝑚))
104103ralrimiva 2949 . . . . 5 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → ∀𝑚 ∈ ℕ ¬ 𝑥 ∈ (𝑀𝑚))
105 eluni2 4376 . . . . . . . . 9 (𝑥 ran 𝑀 ↔ ∃𝑦 ∈ ran 𝑀 𝑥𝑦)
106 ffn 5958 . . . . . . . . . . 11 (𝑀:ℕ⟶(Clsd‘𝐽) → 𝑀 Fn ℕ)
1079, 106syl 17 . . . . . . . . . 10 (𝜑𝑀 Fn ℕ)
108 eleq2 2677 . . . . . . . . . . 11 (𝑦 = (𝑀𝑚) → (𝑥𝑦𝑥 ∈ (𝑀𝑚)))
109108rexrn 6269 . . . . . . . . . 10 (𝑀 Fn ℕ → (∃𝑦 ∈ ran 𝑀 𝑥𝑦 ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀𝑚)))
110107, 109syl 17 . . . . . . . . 9 (𝜑 → (∃𝑦 ∈ ran 𝑀 𝑥𝑦 ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀𝑚)))
111105, 110syl5bb 271 . . . . . . . 8 (𝜑 → (𝑥 ran 𝑀 ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀𝑚)))
112111notbid 307 . . . . . . 7 (𝜑 → (¬ 𝑥 ran 𝑀 ↔ ¬ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀𝑚)))
113 ralnex 2975 . . . . . . 7 (∀𝑚 ∈ ℕ ¬ 𝑥 ∈ (𝑀𝑚) ↔ ¬ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑀𝑚))
114112, 113syl6bbr 277 . . . . . 6 (𝜑 → (¬ 𝑥 ran 𝑀 ↔ ∀𝑚 ∈ ℕ ¬ 𝑥 ∈ (𝑀𝑚)))
115114biimpar 501 . . . . 5 ((𝜑 ∧ ∀𝑚 ∈ ℕ ¬ 𝑥 ∈ (𝑀𝑚)) → ¬ 𝑥 ran 𝑀)
116104, 115syldan 486 . . . 4 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → ¬ 𝑥 ran 𝑀)
11774, 116eldifd 3551 . . 3 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → 𝑥 ∈ ((𝐶(ball‘𝐷)𝑅) ∖ ran 𝑀))
118 ne0i 3880 . . 3 (𝑥 ∈ ((𝐶(ball‘𝐷)𝑅) ∖ ran 𝑀) → ((𝐶(ball‘𝐷)𝑅) ∖ ran 𝑀) ≠ ∅)
119117, 118syl 17 . 2 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥) → ((𝐶(ball‘𝐷)𝑅) ∖ ran 𝑀) ≠ ∅)
12066, 119exlimddv 1850 1 (𝜑 → ((𝐶(ball‘𝐷)𝑅) ∖ ran 𝑀) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  cdif 3537  wss 3540  c0 3874  cop 4131   cuni 4372   class class class wbr 4583  {copab 4642   × cxp 5036  dom cdm 5038  ran crn 5039  ccom 5042  Fun wfun 5798   Fn wfn 5799  wf 5800  ontowfo 5802  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  *cxr 9952   < clt 9953   / cdiv 10563  cn 10897  +crp 11708  ∞Metcxmt 19552  Metcme 19553  ballcbl 19554  MetOpencmopn 19557  Topctop 20517  Clsdccld 20630  clsccl 20632  𝑡clm 20840  Caucca 22859  CMetcms 22860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ico 12052  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lm 20843  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-cfil 22861  df-cau 22862  df-cmet 22863
This theorem is referenced by:  bcthlem5  22933
  Copyright terms: Public domain W3C validator