Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ser1const Structured version   Visualization version   GIF version

Theorem ser1const 12719
 Description: Value of the partial series sum of a constant function. (Contributed by NM, 8-Aug-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
Assertion
Ref Expression
ser1const ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴))

Proof of Theorem ser1const
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . . 5 (𝑗 = 1 → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (seq1( + , (ℕ × {𝐴}))‘1))
2 oveq1 6556 . . . . 5 (𝑗 = 1 → (𝑗 · 𝐴) = (1 · 𝐴))
31, 2eqeq12d 2625 . . . 4 (𝑗 = 1 → ((seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴) ↔ (seq1( + , (ℕ × {𝐴}))‘1) = (1 · 𝐴)))
43imbi2d 329 . . 3 (𝑗 = 1 → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴)) ↔ (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘1) = (1 · 𝐴))))
5 fveq2 6103 . . . . 5 (𝑗 = 𝑘 → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (seq1( + , (ℕ × {𝐴}))‘𝑘))
6 oveq1 6556 . . . . 5 (𝑗 = 𝑘 → (𝑗 · 𝐴) = (𝑘 · 𝐴))
75, 6eqeq12d 2625 . . . 4 (𝑗 = 𝑘 → ((seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴) ↔ (seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴)))
87imbi2d 329 . . 3 (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴)) ↔ (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴))))
9 fveq2 6103 . . . . 5 (𝑗 = (𝑘 + 1) → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)))
10 oveq1 6556 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑗 · 𝐴) = ((𝑘 + 1) · 𝐴))
119, 10eqeq12d 2625 . . . 4 (𝑗 = (𝑘 + 1) → ((seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴) ↔ (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴)))
1211imbi2d 329 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴)) ↔ (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴))))
13 fveq2 6103 . . . . 5 (𝑗 = 𝑁 → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (seq1( + , (ℕ × {𝐴}))‘𝑁))
14 oveq1 6556 . . . . 5 (𝑗 = 𝑁 → (𝑗 · 𝐴) = (𝑁 · 𝐴))
1513, 14eqeq12d 2625 . . . 4 (𝑗 = 𝑁 → ((seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴) ↔ (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴)))
1615imbi2d 329 . . 3 (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴)) ↔ (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴))))
17 1z 11284 . . . 4 1 ∈ ℤ
18 1nn 10908 . . . . . 6 1 ∈ ℕ
19 fvconst2g 6372 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴)
2018, 19mpan2 703 . . . . 5 (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = 𝐴)
21 mulid2 9917 . . . . 5 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
2220, 21eqtr4d 2647 . . . 4 (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = (1 · 𝐴))
2317, 22seq1i 12677 . . 3 (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘1) = (1 · 𝐴))
24 oveq1 6556 . . . . . 6 ((seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴) → ((seq1( + , (ℕ × {𝐴}))‘𝑘) + 𝐴) = ((𝑘 · 𝐴) + 𝐴))
25 seqp1 12678 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘1) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + ((ℕ × {𝐴})‘(𝑘 + 1))))
26 nnuz 11599 . . . . . . . . . 10 ℕ = (ℤ‘1)
2725, 26eleq2s 2706 . . . . . . . . 9 (𝑘 ∈ ℕ → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + ((ℕ × {𝐴})‘(𝑘 + 1))))
2827adantl 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + ((ℕ × {𝐴})‘(𝑘 + 1))))
29 peano2nn 10909 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
30 fvconst2g 6372 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴)
3129, 30sylan2 490 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴)
3231oveq2d 6565 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((seq1( + , (ℕ × {𝐴}))‘𝑘) + ((ℕ × {𝐴})‘(𝑘 + 1))) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + 𝐴))
3328, 32eqtrd 2644 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + 𝐴))
34 nncn 10905 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
35 id 22 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
36 ax-1cn 9873 . . . . . . . . . 10 1 ∈ ℂ
37 adddir 9910 . . . . . . . . . 10 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + (1 · 𝐴)))
3836, 37mp3an2 1404 . . . . . . . . 9 ((𝑘 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + (1 · 𝐴)))
3934, 35, 38syl2anr 494 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + (1 · 𝐴)))
4021adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (1 · 𝐴) = 𝐴)
4140oveq2d 6565 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝑘 · 𝐴) + (1 · 𝐴)) = ((𝑘 · 𝐴) + 𝐴))
4239, 41eqtrd 2644 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + 𝐴))
4333, 42eqeq12d 2625 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴) ↔ ((seq1( + , (ℕ × {𝐴}))‘𝑘) + 𝐴) = ((𝑘 · 𝐴) + 𝐴)))
4424, 43syl5ibr 235 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴)))
4544expcom 450 . . . 4 (𝑘 ∈ ℕ → (𝐴 ∈ ℂ → ((seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴))))
4645a2d 29 . . 3 (𝑘 ∈ ℕ → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴)) → (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴))))
474, 8, 12, 16, 23, 46nnind 10915 . 2 (𝑁 ∈ ℕ → (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴)))
4847impcom 445 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {csn 4125   × cxp 5036  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  1c1 9816   + caddc 9818   · cmul 9820  ℕcn 10897  ℤ≥cuz 11563  seqcseq 12663 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664 This theorem is referenced by:  fsumconst  14364  vitalilem4  23186  ovoliunnfl  32621  voliunnfl  32623
 Copyright terms: Public domain W3C validator