MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2i1fseqle Structured version   Visualization version   GIF version

Theorem itg2i1fseqle 23327
Description: Subject to the conditions coming from mbfi1fseq 23294, the sequence of simple functions are all less than the target function 𝐹. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itg2i1fseq.1 (𝜑𝐹 ∈ MblFn)
itg2i1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2i1fseq.3 (𝜑𝑃:ℕ⟶dom ∫1)
itg2i1fseq.4 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))))
itg2i1fseq.5 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
Assertion
Ref Expression
itg2i1fseqle ((𝜑𝑀 ∈ ℕ) → (𝑃𝑀) ∘𝑟𝐹)
Distinct variable groups:   𝑥,𝑛,𝐹   𝑛,𝑀   𝑃,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑀(𝑥)

Proof of Theorem itg2i1fseqle
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . . . . 7 (𝑛 = 𝑀 → (𝑃𝑛) = (𝑃𝑀))
21fveq1d 6105 . . . . . 6 (𝑛 = 𝑀 → ((𝑃𝑛)‘𝑦) = ((𝑃𝑀)‘𝑦))
3 eqid 2610 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))
4 fvex 6113 . . . . . 6 ((𝑃𝑀)‘𝑦) ∈ V
52, 3, 4fvmpt 6191 . . . . 5 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑀) = ((𝑃𝑀)‘𝑦))
65ad2antlr 759 . . . 4 (((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑀) = ((𝑃𝑀)‘𝑦))
7 nnuz 11599 . . . . 5 ℕ = (ℤ‘1)
8 simplr 788 . . . . 5 (((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝑀 ∈ ℕ)
9 itg2i1fseq.5 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
10 fveq2 6103 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑃𝑛)‘𝑥) = ((𝑃𝑛)‘𝑦))
1110mpteq2dv 4673 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)))
12 fveq2 6103 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1311, 12breq12d 4596 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦)))
1413rspccva 3281 . . . . . . 7 ((∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥) ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦))
159, 14sylan 487 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦))
1615adantlr 747 . . . . 5 (((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦))
17 fveq2 6103 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑃𝑛) = (𝑃𝑘))
1817fveq1d 6105 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝑃𝑛)‘𝑦) = ((𝑃𝑘)‘𝑦))
19 fvex 6113 . . . . . . . . 9 ((𝑃𝑘)‘𝑦) ∈ V
2018, 3, 19fvmpt 6191 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑘) = ((𝑃𝑘)‘𝑦))
2120adantl 481 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑘) = ((𝑃𝑘)‘𝑦))
22 itg2i1fseq.3 . . . . . . . . . . 11 (𝜑𝑃:ℕ⟶dom ∫1)
2322ffvelrnda 6267 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∈ dom ∫1)
24 i1ff 23249 . . . . . . . . . 10 ((𝑃𝑘) ∈ dom ∫1 → (𝑃𝑘):ℝ⟶ℝ)
2523, 24syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘):ℝ⟶ℝ)
2625ffvelrnda 6267 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑘)‘𝑦) ∈ ℝ)
2726an32s 842 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑃𝑘)‘𝑦) ∈ ℝ)
2821, 27eqeltrd 2688 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑘) ∈ ℝ)
2928adantllr 751 . . . . 5 ((((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑘) ∈ ℝ)
30 itg2i1fseq.4 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))))
31 simpr 476 . . . . . . . . . . . . 13 ((0𝑝𝑟 ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))) → (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1)))
3231ralimi 2936 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))) → ∀𝑛 ∈ ℕ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1)))
3330, 32syl 17 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1)))
34 oveq1 6556 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
3534fveq2d 6107 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑘 + 1)))
3617, 35breq12d 4596 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1)) ↔ (𝑃𝑘) ∘𝑟 ≤ (𝑃‘(𝑘 + 1))))
3736rspccva 3281 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1)) ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) ∘𝑟 ≤ (𝑃‘(𝑘 + 1)))
3833, 37sylan 487 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∘𝑟 ≤ (𝑃‘(𝑘 + 1)))
39 ffn 5958 . . . . . . . . . . . 12 ((𝑃𝑘):ℝ⟶ℝ → (𝑃𝑘) Fn ℝ)
4023, 24, 393syl 18 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) Fn ℝ)
41 peano2nn 10909 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
42 ffvelrn 6265 . . . . . . . . . . . . 13 ((𝑃:ℕ⟶dom ∫1 ∧ (𝑘 + 1) ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1)
4322, 41, 42syl2an 493 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1)
44 i1ff 23249 . . . . . . . . . . . 12 ((𝑃‘(𝑘 + 1)) ∈ dom ∫1 → (𝑃‘(𝑘 + 1)):ℝ⟶ℝ)
45 ffn 5958 . . . . . . . . . . . 12 ((𝑃‘(𝑘 + 1)):ℝ⟶ℝ → (𝑃‘(𝑘 + 1)) Fn ℝ)
4643, 44, 453syl 18 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑃‘(𝑘 + 1)) Fn ℝ)
47 reex 9906 . . . . . . . . . . . 12 ℝ ∈ V
4847a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ℝ ∈ V)
49 inidm 3784 . . . . . . . . . . 11 (ℝ ∩ ℝ) = ℝ
50 eqidd 2611 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑘)‘𝑦) = ((𝑃𝑘)‘𝑦))
51 eqidd 2611 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘(𝑘 + 1))‘𝑦) = ((𝑃‘(𝑘 + 1))‘𝑦))
5240, 46, 48, 48, 49, 50, 51ofrfval 6803 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝑃𝑘) ∘𝑟 ≤ (𝑃‘(𝑘 + 1)) ↔ ∀𝑦 ∈ ℝ ((𝑃𝑘)‘𝑦) ≤ ((𝑃‘(𝑘 + 1))‘𝑦)))
5338, 52mpbid 221 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃𝑘)‘𝑦) ≤ ((𝑃‘(𝑘 + 1))‘𝑦))
5453r19.21bi 2916 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑘)‘𝑦) ≤ ((𝑃‘(𝑘 + 1))‘𝑦))
5554an32s 842 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑃𝑘)‘𝑦) ≤ ((𝑃‘(𝑘 + 1))‘𝑦))
56 fveq2 6103 . . . . . . . . . . 11 (𝑛 = (𝑘 + 1) → (𝑃𝑛) = (𝑃‘(𝑘 + 1)))
5756fveq1d 6105 . . . . . . . . . 10 (𝑛 = (𝑘 + 1) → ((𝑃𝑛)‘𝑦) = ((𝑃‘(𝑘 + 1))‘𝑦))
58 fvex 6113 . . . . . . . . . 10 ((𝑃‘(𝑘 + 1))‘𝑦) ∈ V
5957, 3, 58fvmpt 6191 . . . . . . . . 9 ((𝑘 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑘 + 1)) = ((𝑃‘(𝑘 + 1))‘𝑦))
6041, 59syl 17 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑘 + 1)) = ((𝑃‘(𝑘 + 1))‘𝑦))
6160adantl 481 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑘 + 1)) = ((𝑃‘(𝑘 + 1))‘𝑦))
6255, 21, 613brtr4d 4615 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑘 + 1)))
6362adantllr 751 . . . . 5 ((((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑘 + 1)))
647, 8, 16, 29, 63climub 14240 . . . 4 (((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑀) ≤ (𝐹𝑦))
656, 64eqbrtrrd 4607 . . 3 (((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑀)‘𝑦) ≤ (𝐹𝑦))
6665ralrimiva 2949 . 2 ((𝜑𝑀 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃𝑀)‘𝑦) ≤ (𝐹𝑦))
6722ffvelrnda 6267 . . . 4 ((𝜑𝑀 ∈ ℕ) → (𝑃𝑀) ∈ dom ∫1)
68 i1ff 23249 . . . 4 ((𝑃𝑀) ∈ dom ∫1 → (𝑃𝑀):ℝ⟶ℝ)
69 ffn 5958 . . . 4 ((𝑃𝑀):ℝ⟶ℝ → (𝑃𝑀) Fn ℝ)
7067, 68, 693syl 18 . . 3 ((𝜑𝑀 ∈ ℕ) → (𝑃𝑀) Fn ℝ)
71 itg2i1fseq.2 . . . . . 6 (𝜑𝐹:ℝ⟶(0[,)+∞))
72 icossicc 12131 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
73 fss 5969 . . . . . 6 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
7471, 72, 73sylancl 693 . . . . 5 (𝜑𝐹:ℝ⟶(0[,]+∞))
75 ffn 5958 . . . . 5 (𝐹:ℝ⟶(0[,]+∞) → 𝐹 Fn ℝ)
7674, 75syl 17 . . . 4 (𝜑𝐹 Fn ℝ)
7776adantr 480 . . 3 ((𝜑𝑀 ∈ ℕ) → 𝐹 Fn ℝ)
7847a1i 11 . . 3 ((𝜑𝑀 ∈ ℕ) → ℝ ∈ V)
79 eqidd 2611 . . 3 (((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑀)‘𝑦) = ((𝑃𝑀)‘𝑦))
80 eqidd 2611 . . 3 (((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
8170, 77, 78, 78, 49, 79, 80ofrfval 6803 . 2 ((𝜑𝑀 ∈ ℕ) → ((𝑃𝑀) ∘𝑟𝐹 ↔ ∀𝑦 ∈ ℝ ((𝑃𝑀)‘𝑦) ≤ (𝐹𝑦)))
8266, 81mpbird 246 1 ((𝜑𝑀 ∈ ℕ) → (𝑃𝑀) ∘𝑟𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540   class class class wbr 4583  cmpt 4643  dom cdm 5038   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑟 cofr 6794  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  +∞cpnf 9950  cle 9954  cn 10897  [,)cico 12048  [,]cicc 12049  cli 14063  MblFncmbf 23189  1citg1 23190  0𝑝c0p 23242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-icc 12053  df-fz 12198  df-fl 12455  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-itg1 23195
This theorem is referenced by:  itg2i1fseq  23328  itg2i1fseq3  23330  itg2addlem  23331
  Copyright terms: Public domain W3C validator