MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2i1fseqle Structured version   Unicode version

Theorem itg2i1fseqle 22327
Description: Subject to the conditions coming from mbfi1fseq 22294, the sequence of simple functions are all less than the target function  F. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itg2i1fseq.1  |-  ( ph  ->  F  e. MblFn )
itg2i1fseq.2  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
itg2i1fseq.3  |-  ( ph  ->  P : NN --> dom  S.1 )
itg2i1fseq.4  |-  ( ph  ->  A. n  e.  NN  ( 0p  oR  <_  ( P `  n )  /\  ( P `  n )  oR  <_  ( P `
 ( n  + 
1 ) ) ) )
itg2i1fseq.5  |-  ( ph  ->  A. x  e.  RR  ( n  e.  NN  |->  ( ( P `  n ) `  x
) )  ~~>  ( F `
 x ) )
Assertion
Ref Expression
itg2i1fseqle  |-  ( (
ph  /\  M  e.  NN )  ->  ( P `
 M )  oR  <_  F )
Distinct variable groups:    x, n, F    n, M    P, n, x
Allowed substitution hints:    ph( x, n)    M( x)

Proof of Theorem itg2i1fseqle
Dummy variables  k 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5848 . . . . . . 7  |-  ( n  =  M  ->  ( P `  n )  =  ( P `  M ) )
21fveq1d 5850 . . . . . 6  |-  ( n  =  M  ->  (
( P `  n
) `  y )  =  ( ( P `
 M ) `  y ) )
3 eqid 2454 . . . . . 6  |-  ( n  e.  NN  |->  ( ( P `  n ) `
 y ) )  =  ( n  e.  NN  |->  ( ( P `
 n ) `  y ) )
4 fvex 5858 . . . . . 6  |-  ( ( P `  M ) `
 y )  e. 
_V
52, 3, 4fvmpt 5931 . . . . 5  |-  ( M  e.  NN  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  M
)  =  ( ( P `  M ) `
 y ) )
65ad2antlr 724 . . . 4  |-  ( ( ( ph  /\  M  e.  NN )  /\  y  e.  RR )  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  M
)  =  ( ( P `  M ) `
 y ) )
7 nnuz 11117 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
8 simplr 753 . . . . 5  |-  ( ( ( ph  /\  M  e.  NN )  /\  y  e.  RR )  ->  M  e.  NN )
9 itg2i1fseq.5 . . . . . . 7  |-  ( ph  ->  A. x  e.  RR  ( n  e.  NN  |->  ( ( P `  n ) `  x
) )  ~~>  ( F `
 x ) )
10 fveq2 5848 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( P `  n
) `  x )  =  ( ( P `
 n ) `  y ) )
1110mpteq2dv 4526 . . . . . . . . 9  |-  ( x  =  y  ->  (
n  e.  NN  |->  ( ( P `  n
) `  x )
)  =  ( n  e.  NN  |->  ( ( P `  n ) `
 y ) ) )
12 fveq2 5848 . . . . . . . . 9  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
1311, 12breq12d 4452 . . . . . . . 8  |-  ( x  =  y  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  x
) )  ~~>  ( F `
 x )  <->  ( n  e.  NN  |->  ( ( P `
 n ) `  y ) )  ~~>  ( F `
 y ) ) )
1413rspccva 3206 . . . . . . 7  |-  ( ( A. x  e.  RR  ( n  e.  NN  |->  ( ( P `  n ) `  x
) )  ~~>  ( F `
 x )  /\  y  e.  RR )  ->  ( n  e.  NN  |->  ( ( P `  n ) `  y
) )  ~~>  ( F `
 y ) )
159, 14sylan 469 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( n  e.  NN  |->  ( ( P `  n ) `
 y ) )  ~~>  ( F `  y
) )
1615adantlr 712 . . . . 5  |-  ( ( ( ph  /\  M  e.  NN )  /\  y  e.  RR )  ->  (
n  e.  NN  |->  ( ( P `  n
) `  y )
)  ~~>  ( F `  y ) )
17 fveq2 5848 . . . . . . . . . 10  |-  ( n  =  k  ->  ( P `  n )  =  ( P `  k ) )
1817fveq1d 5850 . . . . . . . . 9  |-  ( n  =  k  ->  (
( P `  n
) `  y )  =  ( ( P `
 k ) `  y ) )
19 fvex 5858 . . . . . . . . 9  |-  ( ( P `  k ) `
 y )  e. 
_V
2018, 3, 19fvmpt 5931 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  k
)  =  ( ( P `  k ) `
 y ) )
2120adantl 464 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  k
)  =  ( ( P `  k ) `
 y ) )
22 itg2i1fseq.3 . . . . . . . . . . 11  |-  ( ph  ->  P : NN --> dom  S.1 )
2322ffvelrnda 6007 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( P `
 k )  e. 
dom  S.1 )
24 i1ff 22249 . . . . . . . . . 10  |-  ( ( P `  k )  e.  dom  S.1  ->  ( P `  k ) : RR --> RR )
2523, 24syl 16 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( P `
 k ) : RR --> RR )
2625ffvelrnda 6007 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  y  e.  RR )  ->  (
( P `  k
) `  y )  e.  RR )
2726an32s 802 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  k  e.  NN )  ->  (
( P `  k
) `  y )  e.  RR )
2821, 27eqeltrd 2542 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  k
)  e.  RR )
2928adantllr 716 . . . . 5  |-  ( ( ( ( ph  /\  M  e.  NN )  /\  y  e.  RR )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( P `  n ) `
 y ) ) `
 k )  e.  RR )
30 itg2i1fseq.4 . . . . . . . . . . . 12  |-  ( ph  ->  A. n  e.  NN  ( 0p  oR  <_  ( P `  n )  /\  ( P `  n )  oR  <_  ( P `
 ( n  + 
1 ) ) ) )
31 simpr 459 . . . . . . . . . . . . 13  |-  ( ( 0p  oR  <_  ( P `  n )  /\  ( P `  n )  oR  <_  ( P `
 ( n  + 
1 ) ) )  ->  ( P `  n )  oR  <_  ( P `  ( n  +  1
) ) )
3231ralimi 2847 . . . . . . . . . . . 12  |-  ( A. n  e.  NN  (
0p  oR  <_  ( P `  n )  /\  ( P `  n )  oR  <_  ( P `
 ( n  + 
1 ) ) )  ->  A. n  e.  NN  ( P `  n )  oR  <_  ( P `  ( n  +  1 ) ) )
3330, 32syl 16 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  NN  ( P `  n )  oR  <_  ( P `  ( n  +  1 ) ) )
34 oveq1 6277 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
n  +  1 )  =  ( k  +  1 ) )
3534fveq2d 5852 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  ( P `  ( n  +  1 ) )  =  ( P `  ( k  +  1 ) ) )
3617, 35breq12d 4452 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( P `  n
)  oR  <_ 
( P `  (
n  +  1 ) )  <->  ( P `  k )  oR  <_  ( P `  ( k  +  1 ) ) ) )
3736rspccva 3206 . . . . . . . . . . 11  |-  ( ( A. n  e.  NN  ( P `  n )  oR  <_  ( P `  ( n  +  1 ) )  /\  k  e.  NN )  ->  ( P `  k )  oR  <_  ( P `  ( k  +  1 ) ) )
3833, 37sylan 469 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( P `
 k )  oR  <_  ( P `  ( k  +  1 ) ) )
39 ffn 5713 . . . . . . . . . . . 12  |-  ( ( P `  k ) : RR --> RR  ->  ( P `  k )  Fn  RR )
4023, 24, 393syl 20 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( P `
 k )  Fn  RR )
41 peano2nn 10543 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
42 ffvelrn 6005 . . . . . . . . . . . . 13  |-  ( ( P : NN --> dom  S.1  /\  ( k  +  1 )  e.  NN )  ->  ( P `  ( k  +  1 ) )  e.  dom  S.1 )
4322, 41, 42syl2an 475 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( P `
 ( k  +  1 ) )  e. 
dom  S.1 )
44 i1ff 22249 . . . . . . . . . . . 12  |-  ( ( P `  ( k  +  1 ) )  e.  dom  S.1  ->  ( P `  ( k  +  1 ) ) : RR --> RR )
45 ffn 5713 . . . . . . . . . . . 12  |-  ( ( P `  ( k  +  1 ) ) : RR --> RR  ->  ( P `  ( k  +  1 ) )  Fn  RR )
4643, 44, 453syl 20 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( P `
 ( k  +  1 ) )  Fn  RR )
47 reex 9572 . . . . . . . . . . . 12  |-  RR  e.  _V
4847a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  RR  e.  _V )
49 inidm 3693 . . . . . . . . . . 11  |-  ( RR 
i^i  RR )  =  RR
50 eqidd 2455 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  y  e.  RR )  ->  (
( P `  k
) `  y )  =  ( ( P `
 k ) `  y ) )
51 eqidd 2455 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  y  e.  RR )  ->  (
( P `  (
k  +  1 ) ) `  y )  =  ( ( P `
 ( k  +  1 ) ) `  y ) )
5240, 46, 48, 48, 49, 50, 51ofrfval 6521 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( P `  k )  oR  <_  ( P `  ( k  +  1 ) )  <->  A. y  e.  RR  ( ( P `  k ) `  y
)  <_  ( ( P `  ( k  +  1 ) ) `
 y ) ) )
5338, 52mpbid 210 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  A. y  e.  RR  ( ( P `
 k ) `  y )  <_  (
( P `  (
k  +  1 ) ) `  y ) )
5453r19.21bi 2823 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  y  e.  RR )  ->  (
( P `  k
) `  y )  <_  ( ( P `  ( k  +  1 ) ) `  y
) )
5554an32s 802 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  k  e.  NN )  ->  (
( P `  k
) `  y )  <_  ( ( P `  ( k  +  1 ) ) `  y
) )
56 fveq2 5848 . . . . . . . . . . 11  |-  ( n  =  ( k  +  1 )  ->  ( P `  n )  =  ( P `  ( k  +  1 ) ) )
5756fveq1d 5850 . . . . . . . . . 10  |-  ( n  =  ( k  +  1 )  ->  (
( P `  n
) `  y )  =  ( ( P `
 ( k  +  1 ) ) `  y ) )
58 fvex 5858 . . . . . . . . . 10  |-  ( ( P `  ( k  +  1 ) ) `
 y )  e. 
_V
5957, 3, 58fvmpt 5931 . . . . . . . . 9  |-  ( ( k  +  1 )  e.  NN  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  (
k  +  1 ) )  =  ( ( P `  ( k  +  1 ) ) `
 y ) )
6041, 59syl 16 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  (
k  +  1 ) )  =  ( ( P `  ( k  +  1 ) ) `
 y ) )
6160adantl 464 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  (
k  +  1 ) )  =  ( ( P `  ( k  +  1 ) ) `
 y ) )
6255, 21, 613brtr4d 4469 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  k
)  <_  ( (
n  e.  NN  |->  ( ( P `  n
) `  y )
) `  ( k  +  1 ) ) )
6362adantllr 716 . . . . 5  |-  ( ( ( ( ph  /\  M  e.  NN )  /\  y  e.  RR )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( P `  n ) `
 y ) ) `
 k )  <_ 
( ( n  e.  NN  |->  ( ( P `
 n ) `  y ) ) `  ( k  +  1 ) ) )
647, 8, 16, 29, 63climub 13566 . . . 4  |-  ( ( ( ph  /\  M  e.  NN )  /\  y  e.  RR )  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  M
)  <_  ( F `  y ) )
656, 64eqbrtrrd 4461 . . 3  |-  ( ( ( ph  /\  M  e.  NN )  /\  y  e.  RR )  ->  (
( P `  M
) `  y )  <_  ( F `  y
) )
6665ralrimiva 2868 . 2  |-  ( (
ph  /\  M  e.  NN )  ->  A. y  e.  RR  ( ( P `
 M ) `  y )  <_  ( F `  y )
)
6722ffvelrnda 6007 . . . 4  |-  ( (
ph  /\  M  e.  NN )  ->  ( P `
 M )  e. 
dom  S.1 )
68 i1ff 22249 . . . 4  |-  ( ( P `  M )  e.  dom  S.1  ->  ( P `  M ) : RR --> RR )
69 ffn 5713 . . . 4  |-  ( ( P `  M ) : RR --> RR  ->  ( P `  M )  Fn  RR )
7067, 68, 693syl 20 . . 3  |-  ( (
ph  /\  M  e.  NN )  ->  ( P `
 M )  Fn  RR )
71 itg2i1fseq.2 . . . . . 6  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
72 icossicc 11614 . . . . . 6  |-  ( 0 [,) +oo )  C_  ( 0 [,] +oo )
73 fss 5721 . . . . . 6  |-  ( ( F : RR --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  ( 0 [,] +oo ) )  ->  F : RR --> ( 0 [,] +oo ) )
7471, 72, 73sylancl 660 . . . . 5  |-  ( ph  ->  F : RR --> ( 0 [,] +oo ) )
75 ffn 5713 . . . . 5  |-  ( F : RR --> ( 0 [,] +oo )  ->  F  Fn  RR )
7674, 75syl 16 . . . 4  |-  ( ph  ->  F  Fn  RR )
7776adantr 463 . . 3  |-  ( (
ph  /\  M  e.  NN )  ->  F  Fn  RR )
7847a1i 11 . . 3  |-  ( (
ph  /\  M  e.  NN )  ->  RR  e.  _V )
79 eqidd 2455 . . 3  |-  ( ( ( ph  /\  M  e.  NN )  /\  y  e.  RR )  ->  (
( P `  M
) `  y )  =  ( ( P `
 M ) `  y ) )
80 eqidd 2455 . . 3  |-  ( ( ( ph  /\  M  e.  NN )  /\  y  e.  RR )  ->  ( F `  y )  =  ( F `  y ) )
8170, 77, 78, 78, 49, 79, 80ofrfval 6521 . 2  |-  ( (
ph  /\  M  e.  NN )  ->  ( ( P `  M )  oR  <_  F  <->  A. y  e.  RR  (
( P `  M
) `  y )  <_  ( F `  y
) ) )
8266, 81mpbird 232 1  |-  ( (
ph  /\  M  e.  NN )  ->  ( P `
 M )  oR  <_  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   _Vcvv 3106    C_ wss 3461   class class class wbr 4439    |-> cmpt 4497   dom cdm 4988    Fn wfn 5565   -->wf 5566   ` cfv 5570  (class class class)co 6270    oRcofr 6512   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484   +oocpnf 9614    <_ cle 9618   NNcn 10531   [,)cico 11534   [,]cicc 11535    ~~> cli 13389  MblFncmbf 22189   S.1citg1 22190   0pc0p 22242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-ofr 6514  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-ico 11538  df-icc 11539  df-fz 11676  df-fl 11910  df-seq 12090  df-exp 12149  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-clim 13393  df-rlim 13394  df-sum 13591  df-itg1 22195
This theorem is referenced by:  itg2i1fseq  22328  itg2i1fseq3  22330  itg2addlem  22331
  Copyright terms: Public domain W3C validator