MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icossicc Structured version   Visualization version   GIF version

Theorem icossicc 12131
Description: A closed-below, open-above interval is a subset of its closure. (Contributed by Thierry Arnoux, 25-Oct-2016.)
Assertion
Ref Expression
icossicc (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)

Proof of Theorem icossicc
Dummy variables 𝑎 𝑏 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 12052 . 2 [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎𝑥𝑥 < 𝑏)})
2 df-icc 12053 . 2 [,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎𝑥𝑥𝑏)})
3 idd 24 . 2 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑤𝐴𝑤))
4 xrltle 11858 . 2 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤𝐵))
51, 2, 3, 4ixxssixx 12060 1 (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 383  wcel 1977  wss 3540   class class class wbr 4583  (class class class)co 6549  *cxr 9952   < clt 9953  cle 9954  [,)cico 12048  [,]cicc 12049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-ico 12052  df-icc 12053
This theorem is referenced by:  iccpnfcnv  22551  itg2mulclem  23319  itg2mulc  23320  itg2monolem1  23323  itg2monolem2  23324  itg2monolem3  23325  itg2mono  23326  itg2i1fseqle  23327  itg2i1fseq3  23330  itg2addlem  23331  itg2gt0  23333  itg2cnlem2  23335  psercnlem2  23982  eliccelico  28929  xrge0slmod  29175  xrge0iifcnv  29307  lmlimxrge0  29322  lmdvglim  29328  esumfsupre  29460  esumpfinvallem  29463  esumpfinval  29464  esumpfinvalf  29465  esumpcvgval  29467  esumpmono  29468  esummulc1  29470  sitmcl  29740  itg2addnc  32634  itg2gt0cn  32635  ftc1anclem6  32660  ftc1anclem8  32662  icoiccdif  38597  limciccioolb  38688  ltmod  38705  fourierdlem63  39062  fge0icoicc  39258  sge0tsms  39273  sge0iunmptlemre  39308  sge0isum  39320  sge0xaddlem1  39326  sge0xaddlem2  39327  sge0pnffsumgt  39335  sge0gtfsumgt  39336  sge0seq  39339  ovnsupge0  39447  ovnlecvr  39448  ovnsubaddlem1  39460  sge0hsphoire  39479  hoidmv1lelem3  39483  hoidmv1le  39484  hoidmvlelem1  39485  hoidmvlelem2  39486  hoidmvlelem3  39487  hoidmvlelem4  39488  hoidmvlelem5  39489  hoidmvle  39490  ovnhoilem1  39491  ovnlecvr2  39500  hspmbllem2  39517
  Copyright terms: Public domain W3C validator