Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > climub | Structured version Visualization version GIF version |
Description: The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.) |
Ref | Expression |
---|---|
clim2ser.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climub.2 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
climub.3 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climub.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
climub.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
Ref | Expression |
---|---|
climub | ⊢ (𝜑 → (𝐹‘𝑁) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . 2 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
2 | climub.2 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
3 | clim2ser.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 2, 3 | syl6eleq 2698 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | eluzelz 11573 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
7 | fveq2 6103 | . . . . . 6 ⊢ (𝑘 = 𝑁 → (𝐹‘𝑘) = (𝐹‘𝑁)) | |
8 | 7 | eleq1d 2672 | . . . . 5 ⊢ (𝑘 = 𝑁 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑁) ∈ ℝ)) |
9 | 8 | imbi2d 329 | . . . 4 ⊢ (𝑘 = 𝑁 → ((𝜑 → (𝐹‘𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹‘𝑁) ∈ ℝ))) |
10 | climub.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
11 | 10 | expcom 450 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → (𝜑 → (𝐹‘𝑘) ∈ ℝ)) |
12 | 9, 11 | vtoclga 3245 | . . 3 ⊢ (𝑁 ∈ 𝑍 → (𝜑 → (𝐹‘𝑁) ∈ ℝ)) |
13 | 2, 12 | mpcom 37 | . 2 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ) |
14 | climub.3 | . 2 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
15 | 3 | uztrn2 11581 | . . . 4 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → 𝑗 ∈ 𝑍) |
16 | 2, 15 | sylan 487 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → 𝑗 ∈ 𝑍) |
17 | fveq2 6103 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
18 | 17 | eleq1d 2672 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑗) ∈ ℝ)) |
19 | 18 | imbi2d 329 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 → (𝐹‘𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹‘𝑗) ∈ ℝ))) |
20 | 19, 11 | vtoclga 3245 | . . . 4 ⊢ (𝑗 ∈ 𝑍 → (𝜑 → (𝐹‘𝑗) ∈ ℝ)) |
21 | 20 | impcom 445 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ) |
22 | 16, 21 | syldan 486 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑗) ∈ ℝ) |
23 | simpr 476 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → 𝑗 ∈ (ℤ≥‘𝑁)) | |
24 | elfzuz 12209 | . . . . 5 ⊢ (𝑘 ∈ (𝑁...𝑗) → 𝑘 ∈ (ℤ≥‘𝑁)) | |
25 | 3 | uztrn2 11581 | . . . . . . 7 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
26 | 2, 25 | sylan 487 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
27 | 26, 10 | syldan 486 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) ∈ ℝ) |
28 | 24, 27 | sylan2 490 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹‘𝑘) ∈ ℝ) |
29 | 28 | adantlr 747 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹‘𝑘) ∈ ℝ) |
30 | elfzuz 12209 | . . . . 5 ⊢ (𝑘 ∈ (𝑁...(𝑗 − 1)) → 𝑘 ∈ (ℤ≥‘𝑁)) | |
31 | climub.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) | |
32 | 26, 31 | syldan 486 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
33 | 30, 32 | sylan2 490 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...(𝑗 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
34 | 33 | adantlr 747 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...(𝑗 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
35 | 23, 29, 34 | monoord 12693 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑁) ≤ (𝐹‘𝑗)) |
36 | 1, 6, 13, 14, 22, 35 | climlec2 14237 | 1 ⊢ (𝜑 → (𝐹‘𝑁) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 ℝcr 9814 1c1 9816 + caddc 9818 ≤ cle 9954 − cmin 10145 ℤcz 11254 ℤ≥cuz 11563 ...cfz 12197 ⇝ cli 14063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-fz 12198 df-fl 12455 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-clim 14067 df-rlim 14068 |
This theorem is referenced by: climserle 14241 itg2i1fseqle 23327 emcllem7 24528 |
Copyright terms: Public domain | W3C validator |