MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliunlem1 Structured version   Visualization version   GIF version

Theorem voliunlem1 23125
Description: Lemma for voliun 23129. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
voliunlem.3 (𝜑𝐹:ℕ⟶dom vol)
voliunlem.5 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
voliunlem1.6 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝐸 ∩ (𝐹𝑛))))
voliunlem1.7 (𝜑𝐸 ⊆ ℝ)
voliunlem1.8 (𝜑 → (vol*‘𝐸) ∈ ℝ)
Assertion
Ref Expression
voliunlem1 ((𝜑𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ran 𝐹))) ≤ (vol*‘𝐸))
Distinct variable groups:   𝑘,𝑛,𝐸   𝑖,𝑘,𝑛,𝐹   𝑘,𝐻   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑖)   𝐸(𝑖)   𝐻(𝑖,𝑛)

Proof of Theorem voliunlem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 voliunlem1.7 . . . . 5 (𝜑𝐸 ⊆ ℝ)
21adantr 480 . . . 4 ((𝜑𝑘 ∈ ℕ) → 𝐸 ⊆ ℝ)
3 voliunlem1.8 . . . . 5 (𝜑 → (vol*‘𝐸) ∈ ℝ)
43adantr 480 . . . 4 ((𝜑𝑘 ∈ ℕ) → (vol*‘𝐸) ∈ ℝ)
5 difss 3699 . . . . 5 (𝐸 ran 𝐹) ⊆ 𝐸
6 ovolsscl 23061 . . . . 5 (((𝐸 ran 𝐹) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 ran 𝐹)) ∈ ℝ)
75, 6mp3an1 1403 . . . 4 ((𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 ran 𝐹)) ∈ ℝ)
82, 4, 7syl2anc 691 . . 3 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 ran 𝐹)) ∈ ℝ)
9 difss 3699 . . . . 5 (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ 𝐸
10 ovolsscl 23061 . . . . 5 (((𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℝ)
119, 10mp3an1 1403 . . . 4 ((𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℝ)
122, 4, 11syl2anc 691 . . 3 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℝ)
13 inss1 3795 . . . . 5 (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ 𝐸
14 ovolsscl 23061 . . . . 5 (((𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℝ)
1513, 14mp3an1 1403 . . . 4 ((𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℝ)
162, 4, 15syl2anc 691 . . 3 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℝ)
17 elfznn 12241 . . . . . . . . 9 (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ)
18 voliunlem.3 . . . . . . . . . . . 12 (𝜑𝐹:ℕ⟶dom vol)
19 ffn 5958 . . . . . . . . . . . 12 (𝐹:ℕ⟶dom vol → 𝐹 Fn ℕ)
2018, 19syl 17 . . . . . . . . . . 11 (𝜑𝐹 Fn ℕ)
21 fnfvelrn 6264 . . . . . . . . . . 11 ((𝐹 Fn ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ran 𝐹)
2220, 21sylan 487 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ran 𝐹)
23 elssuni 4403 . . . . . . . . . 10 ((𝐹𝑛) ∈ ran 𝐹 → (𝐹𝑛) ⊆ ran 𝐹)
2422, 23syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ ran 𝐹)
2517, 24sylan2 490 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑘)) → (𝐹𝑛) ⊆ ran 𝐹)
2625ralrimiva 2949 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (1...𝑘)(𝐹𝑛) ⊆ ran 𝐹)
2726adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ∀𝑛 ∈ (1...𝑘)(𝐹𝑛) ⊆ ran 𝐹)
28 iunss 4497 . . . . . 6 ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ⊆ ran 𝐹 ↔ ∀𝑛 ∈ (1...𝑘)(𝐹𝑛) ⊆ ran 𝐹)
2927, 28sylibr 223 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ (1...𝑘)(𝐹𝑛) ⊆ ran 𝐹)
3029sscond 3709 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐸 ran 𝐹) ⊆ (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
319, 2syl5ss 3579 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ ℝ)
32 ovolss 23060 . . . 4 (((𝐸 ran 𝐹) ⊆ (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ∧ (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ ℝ) → (vol*‘(𝐸 ran 𝐹)) ≤ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))))
3330, 31, 32syl2anc 691 . . 3 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 ran 𝐹)) ≤ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))))
348, 12, 16, 33leadd2dd 10521 . 2 ((𝜑𝑘 ∈ ℕ) → ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ran 𝐹))) ≤ ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))))
35 oveq2 6557 . . . . . . . . . . 11 (𝑧 = 1 → (1...𝑧) = (1...1))
3635iuneq1d 4481 . . . . . . . . . 10 (𝑧 = 1 → 𝑛 ∈ (1...𝑧)(𝐹𝑛) = 𝑛 ∈ (1...1)(𝐹𝑛))
3736eleq1d 2672 . . . . . . . . 9 (𝑧 = 1 → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ↔ 𝑛 ∈ (1...1)(𝐹𝑛) ∈ dom vol))
3836ineq2d 3776 . . . . . . . . . . 11 (𝑧 = 1 → (𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛)) = (𝐸 𝑛 ∈ (1...1)(𝐹𝑛)))
3938fveq2d 6107 . . . . . . . . . 10 (𝑧 = 1 → (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))))
40 fveq2 6103 . . . . . . . . . 10 (𝑧 = 1 → (seq1( + , 𝐻)‘𝑧) = (seq1( + , 𝐻)‘1))
4139, 40eqeq12d 2625 . . . . . . . . 9 (𝑧 = 1 → ((vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧) ↔ (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (seq1( + , 𝐻)‘1)))
4237, 41anbi12d 743 . . . . . . . 8 (𝑧 = 1 → (( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧)) ↔ ( 𝑛 ∈ (1...1)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (seq1( + , 𝐻)‘1))))
4342imbi2d 329 . . . . . . 7 (𝑧 = 1 → ((𝜑 → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧))) ↔ (𝜑 → ( 𝑛 ∈ (1...1)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (seq1( + , 𝐻)‘1)))))
44 oveq2 6557 . . . . . . . . . . 11 (𝑧 = 𝑘 → (1...𝑧) = (1...𝑘))
4544iuneq1d 4481 . . . . . . . . . 10 (𝑧 = 𝑘 𝑛 ∈ (1...𝑧)(𝐹𝑛) = 𝑛 ∈ (1...𝑘)(𝐹𝑛))
4645eleq1d 2672 . . . . . . . . 9 (𝑧 = 𝑘 → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ↔ 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol))
4745ineq2d 3776 . . . . . . . . . . 11 (𝑧 = 𝑘 → (𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛)) = (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
4847fveq2d 6107 . . . . . . . . . 10 (𝑧 = 𝑘 → (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))))
49 fveq2 6103 . . . . . . . . . 10 (𝑧 = 𝑘 → (seq1( + , 𝐻)‘𝑧) = (seq1( + , 𝐻)‘𝑘))
5048, 49eqeq12d 2625 . . . . . . . . 9 (𝑧 = 𝑘 → ((vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧) ↔ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘)))
5146, 50anbi12d 743 . . . . . . . 8 (𝑧 = 𝑘 → (( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧)) ↔ ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘))))
5251imbi2d 329 . . . . . . 7 (𝑧 = 𝑘 → ((𝜑 → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧))) ↔ (𝜑 → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘)))))
53 oveq2 6557 . . . . . . . . . . 11 (𝑧 = (𝑘 + 1) → (1...𝑧) = (1...(𝑘 + 1)))
5453iuneq1d 4481 . . . . . . . . . 10 (𝑧 = (𝑘 + 1) → 𝑛 ∈ (1...𝑧)(𝐹𝑛) = 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
5554eleq1d 2672 . . . . . . . . 9 (𝑧 = (𝑘 + 1) → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ↔ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol))
5654ineq2d 3776 . . . . . . . . . . 11 (𝑧 = (𝑘 + 1) → (𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛)) = (𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)))
5756fveq2d 6107 . . . . . . . . . 10 (𝑧 = (𝑘 + 1) → (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))))
58 fveq2 6103 . . . . . . . . . 10 (𝑧 = (𝑘 + 1) → (seq1( + , 𝐻)‘𝑧) = (seq1( + , 𝐻)‘(𝑘 + 1)))
5957, 58eqeq12d 2625 . . . . . . . . 9 (𝑧 = (𝑘 + 1) → ((vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧) ↔ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1))))
6055, 59anbi12d 743 . . . . . . . 8 (𝑧 = (𝑘 + 1) → (( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧)) ↔ ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1)))))
6160imbi2d 329 . . . . . . 7 (𝑧 = (𝑘 + 1) → ((𝜑 → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧))) ↔ (𝜑 → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1))))))
62 1z 11284 . . . . . . . . . . 11 1 ∈ ℤ
63 fzsn 12254 . . . . . . . . . . 11 (1 ∈ ℤ → (1...1) = {1})
64 iuneq1 4470 . . . . . . . . . . 11 ((1...1) = {1} → 𝑛 ∈ (1...1)(𝐹𝑛) = 𝑛 ∈ {1} (𝐹𝑛))
6562, 63, 64mp2b 10 . . . . . . . . . 10 𝑛 ∈ (1...1)(𝐹𝑛) = 𝑛 ∈ {1} (𝐹𝑛)
66 1ex 9914 . . . . . . . . . . 11 1 ∈ V
67 fveq2 6103 . . . . . . . . . . 11 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
6866, 67iunxsn 4539 . . . . . . . . . 10 𝑛 ∈ {1} (𝐹𝑛) = (𝐹‘1)
6965, 68eqtri 2632 . . . . . . . . 9 𝑛 ∈ (1...1)(𝐹𝑛) = (𝐹‘1)
70 1nn 10908 . . . . . . . . . 10 1 ∈ ℕ
71 ffvelrn 6265 . . . . . . . . . 10 ((𝐹:ℕ⟶dom vol ∧ 1 ∈ ℕ) → (𝐹‘1) ∈ dom vol)
7218, 70, 71sylancl 693 . . . . . . . . 9 (𝜑 → (𝐹‘1) ∈ dom vol)
7369, 72syl5eqel 2692 . . . . . . . 8 (𝜑 𝑛 ∈ (1...1)(𝐹𝑛) ∈ dom vol)
7467ineq2d 3776 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐸 ∩ (𝐹𝑛)) = (𝐸 ∩ (𝐹‘1)))
7574fveq2d 6107 . . . . . . . . . . 11 (𝑛 = 1 → (vol*‘(𝐸 ∩ (𝐹𝑛))) = (vol*‘(𝐸 ∩ (𝐹‘1))))
76 voliunlem1.6 . . . . . . . . . . 11 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝐸 ∩ (𝐹𝑛))))
77 fvex 6113 . . . . . . . . . . 11 (vol*‘(𝐸 ∩ (𝐹‘1))) ∈ V
7875, 76, 77fvmpt 6191 . . . . . . . . . 10 (1 ∈ ℕ → (𝐻‘1) = (vol*‘(𝐸 ∩ (𝐹‘1))))
7970, 78ax-mp 5 . . . . . . . . 9 (𝐻‘1) = (vol*‘(𝐸 ∩ (𝐹‘1)))
80 seq1 12676 . . . . . . . . . 10 (1 ∈ ℤ → (seq1( + , 𝐻)‘1) = (𝐻‘1))
8162, 80ax-mp 5 . . . . . . . . 9 (seq1( + , 𝐻)‘1) = (𝐻‘1)
8269ineq2i 3773 . . . . . . . . . 10 (𝐸 𝑛 ∈ (1...1)(𝐹𝑛)) = (𝐸 ∩ (𝐹‘1))
8382fveq2i 6106 . . . . . . . . 9 (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (vol*‘(𝐸 ∩ (𝐹‘1)))
8479, 81, 833eqtr4ri 2643 . . . . . . . 8 (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (seq1( + , 𝐻)‘1)
8573, 84jctir 559 . . . . . . 7 (𝜑 → ( 𝑛 ∈ (1...1)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (seq1( + , 𝐻)‘1)))
86 peano2nn 10909 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
87 ffvelrn 6265 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶dom vol ∧ (𝑘 + 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ dom vol)
8818, 86, 87syl2an 493 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ dom vol)
89 unmbl 23112 . . . . . . . . . . . . 13 (( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (𝐹‘(𝑘 + 1)) ∈ dom vol) → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) ∈ dom vol)
9089ex 449 . . . . . . . . . . . 12 ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol → ((𝐹‘(𝑘 + 1)) ∈ dom vol → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) ∈ dom vol))
9188, 90syl5com 31 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) ∈ dom vol))
92 simpr 476 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
93 nnuz 11599 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
9492, 93syl6eleq 2698 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
95 fzsuc 12258 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ‘1) → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}))
96 iuneq1 4470 . . . . . . . . . . . . . 14 ((1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛))
9794, 95, 963syl 18 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛))
98 iunxun 4541 . . . . . . . . . . . . . 14 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛))
99 ovex 6577 . . . . . . . . . . . . . . . 16 (𝑘 + 1) ∈ V
100 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
10199, 100iunxsn 4539 . . . . . . . . . . . . . . 15 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛) = (𝐹‘(𝑘 + 1))
102101uneq2i 3726 . . . . . . . . . . . . . 14 ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛)) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1)))
10398, 102eqtri 2632 . . . . . . . . . . . . 13 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1)))
10497, 103syl6eq 2660 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))))
105104eleq1d 2672 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ↔ ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) ∈ dom vol))
10691, 105sylibrd 248 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol))
107 oveq1 6556 . . . . . . . . . . 11 ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘) → ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))) = ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))))
108 inss1 3795 . . . . . . . . . . . . . . 15 (𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ⊆ 𝐸
109108, 2syl5ss 3579 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ⊆ ℝ)
110 ovolsscl 23061 . . . . . . . . . . . . . . . 16 (((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) ∈ ℝ)
111108, 110mp3an1 1403 . . . . . . . . . . . . . . 15 ((𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) ∈ ℝ)
1122, 4, 111syl2anc 691 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) ∈ ℝ)
113 mblsplit 23107 . . . . . . . . . . . . . 14 (((𝐹‘(𝑘 + 1)) ∈ dom vol ∧ (𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ⊆ ℝ ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) ∈ ℝ) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = ((vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1)))) + (vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1))))))
11488, 109, 112, 113syl3anc 1318 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = ((vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1)))) + (vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1))))))
115 in32 3787 . . . . . . . . . . . . . . . 16 ((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1))) = ((𝐸 ∩ (𝐹‘(𝑘 + 1))) ∩ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
116 inss2 3796 . . . . . . . . . . . . . . . . . 18 (𝐸 ∩ (𝐹‘(𝑘 + 1))) ⊆ (𝐹‘(𝑘 + 1))
11786adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
118117, 93syl6eleq 2698 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ (ℤ‘1))
119 eluzfz2 12220 . . . . . . . . . . . . . . . . . . 19 ((𝑘 + 1) ∈ (ℤ‘1) → (𝑘 + 1) ∈ (1...(𝑘 + 1)))
120100ssiun2s 4500 . . . . . . . . . . . . . . . . . . 19 ((𝑘 + 1) ∈ (1...(𝑘 + 1)) → (𝐹‘(𝑘 + 1)) ⊆ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
121118, 119, 1203syl 18 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ⊆ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
122116, 121syl5ss 3579 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → (𝐸 ∩ (𝐹‘(𝑘 + 1))) ⊆ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
123 df-ss 3554 . . . . . . . . . . . . . . . . 17 ((𝐸 ∩ (𝐹‘(𝑘 + 1))) ⊆ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ↔ ((𝐸 ∩ (𝐹‘(𝑘 + 1))) ∩ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) = (𝐸 ∩ (𝐹‘(𝑘 + 1))))
124122, 123sylib 207 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → ((𝐸 ∩ (𝐹‘(𝑘 + 1))) ∩ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) = (𝐸 ∩ (𝐹‘(𝑘 + 1))))
125115, 124syl5eq 2656 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → ((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1))) = (𝐸 ∩ (𝐹‘(𝑘 + 1))))
126125fveq2d 6107 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1)))) = (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))))
127 indif2 3829 . . . . . . . . . . . . . . . 16 (𝐸 ∩ ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∖ (𝐹‘(𝑘 + 1)))) = ((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1)))
128 uncom 3719 . . . . . . . . . . . . . . . . . . 19 ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) = ((𝐹‘(𝑘 + 1)) ∪ 𝑛 ∈ (1...𝑘)(𝐹𝑛))
129104, 128syl6req 2661 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1)) ∪ 𝑛 ∈ (1...𝑘)(𝐹𝑛)) = 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
130 voliunlem.5 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
131130ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → Disj 𝑖 ∈ ℕ (𝐹𝑖))
132117adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝑘 + 1) ∈ ℕ)
13317adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ)
134133nnred 10912 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℝ)
135 elfzle2 12216 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ (1...𝑘) → 𝑛𝑘)
136135adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛𝑘)
13792adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑘 ∈ ℕ)
138 nnleltp1 11309 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑛𝑘𝑛 < (𝑘 + 1)))
139133, 137, 138syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝑛𝑘𝑛 < (𝑘 + 1)))
140136, 139mpbid 221 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 < (𝑘 + 1))
141134, 140gtned 10051 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝑘 + 1) ≠ 𝑛)
142 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑘 + 1) → (𝐹𝑖) = (𝐹‘(𝑘 + 1)))
143 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑛 → (𝐹𝑖) = (𝐹𝑛))
144142, 143disji2 4569 . . . . . . . . . . . . . . . . . . . . . 22 ((Disj 𝑖 ∈ ℕ (𝐹𝑖) ∧ ((𝑘 + 1) ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑘 + 1) ≠ 𝑛) → ((𝐹‘(𝑘 + 1)) ∩ (𝐹𝑛)) = ∅)
145131, 132, 133, 141, 144syl121anc 1323 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((𝐹‘(𝑘 + 1)) ∩ (𝐹𝑛)) = ∅)
146145iuneq2dv 4478 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ (1...𝑘)((𝐹‘(𝑘 + 1)) ∩ (𝐹𝑛)) = 𝑛 ∈ (1...𝑘)∅)
147 iunin2 4520 . . . . . . . . . . . . . . . . . . . 20 𝑛 ∈ (1...𝑘)((𝐹‘(𝑘 + 1)) ∩ (𝐹𝑛)) = ((𝐹‘(𝑘 + 1)) ∩ 𝑛 ∈ (1...𝑘)(𝐹𝑛))
148 iun0 4512 . . . . . . . . . . . . . . . . . . . 20 𝑛 ∈ (1...𝑘)∅ = ∅
149146, 147, 1483eqtr3g 2667 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1)) ∩ 𝑛 ∈ (1...𝑘)(𝐹𝑛)) = ∅)
150 uneqdifeq 4009 . . . . . . . . . . . . . . . . . . 19 (((𝐹‘(𝑘 + 1)) ⊆ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∧ ((𝐹‘(𝑘 + 1)) ∩ 𝑛 ∈ (1...𝑘)(𝐹𝑛)) = ∅) → (((𝐹‘(𝑘 + 1)) ∪ 𝑛 ∈ (1...𝑘)(𝐹𝑛)) = 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ↔ ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∖ (𝐹‘(𝑘 + 1))) = 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
151121, 149, 150syl2anc 691 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (((𝐹‘(𝑘 + 1)) ∪ 𝑛 ∈ (1...𝑘)(𝐹𝑛)) = 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ↔ ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∖ (𝐹‘(𝑘 + 1))) = 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
152129, 151mpbid 221 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∖ (𝐹‘(𝑘 + 1))) = 𝑛 ∈ (1...𝑘)(𝐹𝑛))
153152ineq2d 3776 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐸 ∩ ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∖ (𝐹‘(𝑘 + 1)))) = (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
154127, 153syl5eqr 2658 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → ((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1))) = (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
155154fveq2d 6107 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1)))) = (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))))
156126, 155oveq12d 6567 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1)))) + (vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1))))) = ((vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) + (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))))
157 inss1 3795 . . . . . . . . . . . . . . . . 17 (𝐸 ∩ (𝐹‘(𝑘 + 1))) ⊆ 𝐸
158 ovolsscl 23061 . . . . . . . . . . . . . . . . 17 (((𝐸 ∩ (𝐹‘(𝑘 + 1))) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) ∈ ℝ)
159157, 158mp3an1 1403 . . . . . . . . . . . . . . . 16 ((𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) ∈ ℝ)
1602, 4, 159syl2anc 691 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) ∈ ℝ)
161160recnd 9947 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) ∈ ℂ)
16216recnd 9947 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℂ)
163161, 162addcomd 10117 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) + (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))) = ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))))
164114, 156, 1633eqtrd 2648 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))))
165 seqp1 12678 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ‘1) → (seq1( + , 𝐻)‘(𝑘 + 1)) = ((seq1( + , 𝐻)‘𝑘) + (𝐻‘(𝑘 + 1))))
16694, 165syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘(𝑘 + 1)) = ((seq1( + , 𝐻)‘𝑘) + (𝐻‘(𝑘 + 1))))
167100ineq2d 3776 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → (𝐸 ∩ (𝐹𝑛)) = (𝐸 ∩ (𝐹‘(𝑘 + 1))))
168167fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → (vol*‘(𝐸 ∩ (𝐹𝑛))) = (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))))
169 fvex 6113 . . . . . . . . . . . . . . . 16 (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) ∈ V
170168, 76, 169fvmpt 6191 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ → (𝐻‘(𝑘 + 1)) = (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))))
171117, 170syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐻‘(𝑘 + 1)) = (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))))
172171oveq2d 6565 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (𝐻‘(𝑘 + 1))) = ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))))
173166, 172eqtrd 2644 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘(𝑘 + 1)) = ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))))
174164, 173eqeq12d 2625 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1)) ↔ ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))) = ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))))))
175107, 174syl5ibr 235 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1))))
176106, 175anim12d 584 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘)) → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1)))))
177176expcom 450 . . . . . . . 8 (𝑘 ∈ ℕ → (𝜑 → (( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘)) → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1))))))
178177a2d 29 . . . . . . 7 (𝑘 ∈ ℕ → ((𝜑 → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘))) → (𝜑 → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1))))))
17943, 52, 61, 52, 85, 178nnind 10915 . . . . . 6 (𝑘 ∈ ℕ → (𝜑 → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘))))
180179impcom 445 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘)))
181180simprd 478 . . . 4 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘))
182181eqcomd 2616 . . 3 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘𝑘) = (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))))
183182oveq1d 6564 . 2 ((𝜑𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ran 𝐹))) = ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ran 𝐹))))
184180simpld 474 . . 3 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol)
185 mblsplit 23107 . . 3 (( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ 𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘𝐸) = ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))))
186184, 2, 4, 185syl3anc 1318 . 2 ((𝜑𝑘 ∈ ℕ) → (vol*‘𝐸) = ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))))
18734, 183, 1863brtr4d 4615 1 ((𝜑𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ran 𝐹))) ≤ (vol*‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125   cuni 4372   ciun 4455  Disj wdisj 4553   class class class wbr 4583  cmpt 4643  dom cdm 5038  ran crn 5039   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cn 10897  cz 11254  cuz 11563  ...cfz 12197  seqcseq 12663  vol*covol 23038  volcvol 23039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fl 12455  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-ovol 23040  df-vol 23041
This theorem is referenced by:  voliunlem2  23126  voliunlem3  23127
  Copyright terms: Public domain W3C validator