MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nneo Structured version   Visualization version   GIF version

Theorem nneo 11337
Description: A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.)
Assertion
Ref Expression
nneo (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))

Proof of Theorem nneo
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nncn 10905 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2 peano2cn 10087 . . . . . 6 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
31, 2syl 17 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
4 2cn 10968 . . . . . 6 2 ∈ ℂ
54a1i 11 . . . . 5 (𝑁 ∈ ℕ → 2 ∈ ℂ)
6 2ne0 10990 . . . . . 6 2 ≠ 0
76a1i 11 . . . . 5 (𝑁 ∈ ℕ → 2 ≠ 0)
83, 5, 7divcan2d 10682 . . . 4 (𝑁 ∈ ℕ → (2 · ((𝑁 + 1) / 2)) = (𝑁 + 1))
91, 5, 7divcan2d 10682 . . . . 5 (𝑁 ∈ ℕ → (2 · (𝑁 / 2)) = 𝑁)
109oveq1d 6564 . . . 4 (𝑁 ∈ ℕ → ((2 · (𝑁 / 2)) + 1) = (𝑁 + 1))
118, 10eqtr4d 2647 . . 3 (𝑁 ∈ ℕ → (2 · ((𝑁 + 1) / 2)) = ((2 · (𝑁 / 2)) + 1))
12 nnz 11276 . . . . . 6 (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ)
13 nnz 11276 . . . . . 6 ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ)
14 zneo 11336 . . . . . 6 ((((𝑁 + 1) / 2) ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1))
1512, 13, 14syl2an 493 . . . . 5 ((((𝑁 + 1) / 2) ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ) → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1))
1615expcom 450 . . . 4 ((𝑁 / 2) ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1)))
1716necon2bd 2798 . . 3 ((𝑁 / 2) ∈ ℕ → ((2 · ((𝑁 + 1) / 2)) = ((2 · (𝑁 / 2)) + 1) → ¬ ((𝑁 + 1) / 2) ∈ ℕ))
1811, 17syl5com 31 . 2 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ → ¬ ((𝑁 + 1) / 2) ∈ ℕ))
19 oveq1 6556 . . . . . . 7 (𝑗 = 1 → (𝑗 + 1) = (1 + 1))
2019oveq1d 6564 . . . . . 6 (𝑗 = 1 → ((𝑗 + 1) / 2) = ((1 + 1) / 2))
2120eleq1d 2672 . . . . 5 (𝑗 = 1 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((1 + 1) / 2) ∈ ℕ))
22 oveq1 6556 . . . . . 6 (𝑗 = 1 → (𝑗 / 2) = (1 / 2))
2322eleq1d 2672 . . . . 5 (𝑗 = 1 → ((𝑗 / 2) ∈ ℕ ↔ (1 / 2) ∈ ℕ))
2421, 23orbi12d 742 . . . 4 (𝑗 = 1 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((1 + 1) / 2) ∈ ℕ ∨ (1 / 2) ∈ ℕ)))
25 oveq1 6556 . . . . . . 7 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
2625oveq1d 6564 . . . . . 6 (𝑗 = 𝑘 → ((𝑗 + 1) / 2) = ((𝑘 + 1) / 2))
2726eleq1d 2672 . . . . 5 (𝑗 = 𝑘 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((𝑘 + 1) / 2) ∈ ℕ))
28 oveq1 6556 . . . . . 6 (𝑗 = 𝑘 → (𝑗 / 2) = (𝑘 / 2))
2928eleq1d 2672 . . . . 5 (𝑗 = 𝑘 → ((𝑗 / 2) ∈ ℕ ↔ (𝑘 / 2) ∈ ℕ))
3027, 29orbi12d 742 . . . 4 (𝑗 = 𝑘 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ)))
31 oveq1 6556 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝑗 + 1) = ((𝑘 + 1) + 1))
3231oveq1d 6564 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝑗 + 1) / 2) = (((𝑘 + 1) + 1) / 2))
3332eleq1d 2672 . . . . 5 (𝑗 = (𝑘 + 1) → (((𝑗 + 1) / 2) ∈ ℕ ↔ (((𝑘 + 1) + 1) / 2) ∈ ℕ))
34 oveq1 6556 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝑗 / 2) = ((𝑘 + 1) / 2))
3534eleq1d 2672 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑗 / 2) ∈ ℕ ↔ ((𝑘 + 1) / 2) ∈ ℕ))
3633, 35orbi12d 742 . . . 4 (𝑗 = (𝑘 + 1) → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ)))
37 oveq1 6556 . . . . . . 7 (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1))
3837oveq1d 6564 . . . . . 6 (𝑗 = 𝑁 → ((𝑗 + 1) / 2) = ((𝑁 + 1) / 2))
3938eleq1d 2672 . . . . 5 (𝑗 = 𝑁 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((𝑁 + 1) / 2) ∈ ℕ))
40 oveq1 6556 . . . . . 6 (𝑗 = 𝑁 → (𝑗 / 2) = (𝑁 / 2))
4140eleq1d 2672 . . . . 5 (𝑗 = 𝑁 → ((𝑗 / 2) ∈ ℕ ↔ (𝑁 / 2) ∈ ℕ))
4239, 41orbi12d 742 . . . 4 (𝑗 = 𝑁 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((𝑁 + 1) / 2) ∈ ℕ ∨ (𝑁 / 2) ∈ ℕ)))
43 df-2 10956 . . . . . . . 8 2 = (1 + 1)
4443oveq1i 6559 . . . . . . 7 (2 / 2) = ((1 + 1) / 2)
45 2div2e1 11027 . . . . . . 7 (2 / 2) = 1
4644, 45eqtr3i 2634 . . . . . 6 ((1 + 1) / 2) = 1
47 1nn 10908 . . . . . 6 1 ∈ ℕ
4846, 47eqeltri 2684 . . . . 5 ((1 + 1) / 2) ∈ ℕ
4948orci 404 . . . 4 (((1 + 1) / 2) ∈ ℕ ∨ (1 / 2) ∈ ℕ)
50 peano2nn 10909 . . . . . . 7 ((𝑘 / 2) ∈ ℕ → ((𝑘 / 2) + 1) ∈ ℕ)
51 nncn 10905 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
52 add1p1 11160 . . . . . . . . . . 11 (𝑘 ∈ ℂ → ((𝑘 + 1) + 1) = (𝑘 + 2))
5352oveq1d 6564 . . . . . . . . . 10 (𝑘 ∈ ℂ → (((𝑘 + 1) + 1) / 2) = ((𝑘 + 2) / 2))
54 2cnne0 11119 . . . . . . . . . . . 12 (2 ∈ ℂ ∧ 2 ≠ 0)
55 divdir 10589 . . . . . . . . . . . 12 ((𝑘 ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑘 + 2) / 2) = ((𝑘 / 2) + (2 / 2)))
564, 54, 55mp3an23 1408 . . . . . . . . . . 11 (𝑘 ∈ ℂ → ((𝑘 + 2) / 2) = ((𝑘 / 2) + (2 / 2)))
5745oveq2i 6560 . . . . . . . . . . 11 ((𝑘 / 2) + (2 / 2)) = ((𝑘 / 2) + 1)
5856, 57syl6eq 2660 . . . . . . . . . 10 (𝑘 ∈ ℂ → ((𝑘 + 2) / 2) = ((𝑘 / 2) + 1))
5953, 58eqtrd 2644 . . . . . . . . 9 (𝑘 ∈ ℂ → (((𝑘 + 1) + 1) / 2) = ((𝑘 / 2) + 1))
6051, 59syl 17 . . . . . . . 8 (𝑘 ∈ ℕ → (((𝑘 + 1) + 1) / 2) = ((𝑘 / 2) + 1))
6160eleq1d 2672 . . . . . . 7 (𝑘 ∈ ℕ → ((((𝑘 + 1) + 1) / 2) ∈ ℕ ↔ ((𝑘 / 2) + 1) ∈ ℕ))
6250, 61syl5ibr 235 . . . . . 6 (𝑘 ∈ ℕ → ((𝑘 / 2) ∈ ℕ → (((𝑘 + 1) + 1) / 2) ∈ ℕ))
6362orim2d 881 . . . . 5 (𝑘 ∈ ℕ → ((((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ) → (((𝑘 + 1) / 2) ∈ ℕ ∨ (((𝑘 + 1) + 1) / 2) ∈ ℕ)))
64 orcom 401 . . . . 5 ((((𝑘 + 1) / 2) ∈ ℕ ∨ (((𝑘 + 1) + 1) / 2) ∈ ℕ) ↔ ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ))
6563, 64syl6ib 240 . . . 4 (𝑘 ∈ ℕ → ((((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ) → ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ)))
6624, 30, 36, 42, 49, 65nnind 10915 . . 3 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ ∨ (𝑁 / 2) ∈ ℕ))
6766ord 391 . 2 (𝑁 ∈ ℕ → (¬ ((𝑁 + 1) / 2) ∈ ℕ → (𝑁 / 2) ∈ ℕ))
6818, 67impbid 201 1 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   / cdiv 10563  cn 10897  2c2 10947  cz 11254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255
This theorem is referenced by:  nneoi  11338  zeo  11339  ovolunlem1a  23071  ovolunlem1  23072  nneop  42114  nnolog2flm1  42182
  Copyright terms: Public domain W3C validator