Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem9 Structured version   Visualization version   GIF version

Theorem rpnnen2lem9 14790
 Description: Lemma for rpnnen2 14794. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem9 (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ𝑀)((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (0 + (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3)))))
Distinct variable groups:   𝑥,𝑛,𝑘   𝑘,𝐹   𝑘,𝑀,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem9
StepHypRef Expression
1 eqid 2610 . . 3 (ℤ𝑀) = (ℤ𝑀)
2 nnz 11276 . . 3 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
3 eqidd 2611 . . 3 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘))
4 eluznn 11634 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
5 difss 3699 . . . . . . 7 (ℕ ∖ {𝑀}) ⊆ ℕ
6 rpnnen2.1 . . . . . . . 8 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
76rpnnen2lem2 14783 . . . . . . 7 ((ℕ ∖ {𝑀}) ⊆ ℕ → (𝐹‘(ℕ ∖ {𝑀})):ℕ⟶ℝ)
85, 7ax-mp 5 . . . . . 6 (𝐹‘(ℕ ∖ {𝑀})):ℕ⟶ℝ
98ffvelrni 6266 . . . . 5 (𝑘 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℝ)
109recnd 9947 . . . 4 (𝑘 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℂ)
114, 10syl 17 . . 3 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℂ)
126rpnnen2lem5 14786 . . . 4 (((ℕ ∖ {𝑀}) ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘(ℕ ∖ {𝑀}))) ∈ dom ⇝ )
135, 12mpan 702 . . 3 (𝑀 ∈ ℕ → seq𝑀( + , (𝐹‘(ℕ ∖ {𝑀}))) ∈ dom ⇝ )
141, 2, 3, 11, 13isum1p 14412 . 2 (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ𝑀)((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))((𝐹‘(ℕ ∖ {𝑀}))‘𝑘)))
156rpnnen2lem1 14782 . . . . 5 (((ℕ ∖ {𝑀}) ⊆ ℕ ∧ 𝑀 ∈ ℕ) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) = if(𝑀 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑀), 0))
165, 15mpan 702 . . . 4 (𝑀 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) = if(𝑀 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑀), 0))
17 neldifsnd 4263 . . . . 5 (𝑀 ∈ ℕ → ¬ 𝑀 ∈ (ℕ ∖ {𝑀}))
1817iffalsed 4047 . . . 4 (𝑀 ∈ ℕ → if(𝑀 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑀), 0) = 0)
1916, 18eqtrd 2644 . . 3 (𝑀 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) = 0)
20 eqid 2610 . . . 4 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
21 peano2nn 10909 . . . . 5 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℕ)
2221nnzd 11357 . . . 4 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℤ)
23 eqidd 2611 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘))
24 eluznn 11634 . . . . . 6 (((𝑀 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘 ∈ ℕ)
2521, 24sylan 487 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘 ∈ ℕ)
2625, 10syl 17 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℂ)
27 1re 9918 . . . . . . . 8 1 ∈ ℝ
28 3nn 11063 . . . . . . . 8 3 ∈ ℕ
29 nndivre 10933 . . . . . . . 8 ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ)
3027, 28, 29mp2an 704 . . . . . . 7 (1 / 3) ∈ ℝ
3130recni 9931 . . . . . 6 (1 / 3) ∈ ℂ
3231a1i 11 . . . . 5 (𝑀 ∈ ℕ → (1 / 3) ∈ ℂ)
33 0re 9919 . . . . . . . . 9 0 ∈ ℝ
34 3re 10971 . . . . . . . . . 10 3 ∈ ℝ
35 3pos 10991 . . . . . . . . . 10 0 < 3
3634, 35recgt0ii 10808 . . . . . . . . 9 0 < (1 / 3)
3733, 30, 36ltleii 10039 . . . . . . . 8 0 ≤ (1 / 3)
38 absid 13884 . . . . . . . 8 (((1 / 3) ∈ ℝ ∧ 0 ≤ (1 / 3)) → (abs‘(1 / 3)) = (1 / 3))
3930, 37, 38mp2an 704 . . . . . . 7 (abs‘(1 / 3)) = (1 / 3)
40 1lt3 11073 . . . . . . . 8 1 < 3
41 recgt1 10798 . . . . . . . . 9 ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1))
4234, 35, 41mp2an 704 . . . . . . . 8 (1 < 3 ↔ (1 / 3) < 1)
4340, 42mpbi 219 . . . . . . 7 (1 / 3) < 1
4439, 43eqbrtri 4604 . . . . . 6 (abs‘(1 / 3)) < 1
4544a1i 11 . . . . 5 (𝑀 ∈ ℕ → (abs‘(1 / 3)) < 1)
4621nnnn0d 11228 . . . . 5 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℕ0)
476rpnnen2lem1 14782 . . . . . . . 8 (((ℕ ∖ {𝑀}) ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0))
485, 47mpan 702 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0))
4925, 48syl 17 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0))
50 nnre 10904 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
5150adantr 480 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℝ)
52 eluzle 11576 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘(𝑀 + 1)) → (𝑀 + 1) ≤ 𝑘)
5352adantl 481 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 + 1) ≤ 𝑘)
54 nnltp1le 11310 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑀 < 𝑘 ↔ (𝑀 + 1) ≤ 𝑘))
5525, 54syldan 486 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 < 𝑘 ↔ (𝑀 + 1) ≤ 𝑘))
5653, 55mpbird 246 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 < 𝑘)
5751, 56gtned 10051 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘𝑀)
58 eldifsn 4260 . . . . . . . 8 (𝑘 ∈ (ℕ ∖ {𝑀}) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝑀))
5925, 57, 58sylanbrc 695 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘 ∈ (ℕ ∖ {𝑀}))
6059iftrued 4044 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0) = ((1 / 3)↑𝑘))
6149, 60eqtrd 2644 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = ((1 / 3)↑𝑘))
6232, 45, 46, 61geolim2 14441 . . . 4 (𝑀 ∈ ℕ → seq(𝑀 + 1)( + , (𝐹‘(ℕ ∖ {𝑀}))) ⇝ (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3))))
6320, 22, 23, 26, 62isumclim 14330 . . 3 (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ‘(𝑀 + 1))((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3))))
6419, 63oveq12d 6567 . 2 (𝑀 ∈ ℕ → (((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))((𝐹‘(ℕ ∖ {𝑀}))‘𝑘)) = (0 + (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3)))))
6514, 64eqtrd 2644 1 (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ𝑀)((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (0 + (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ∖ cdif 3537   ⊆ wss 3540  ifcif 4036  𝒫 cpw 4108  {csn 4125   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953   ≤ cle 9954   − cmin 10145   / cdiv 10563  ℕcn 10897  3c3 10948  ℤ≥cuz 11563  seqcseq 12663  ↑cexp 12722  abscabs 13822   ⇝ cli 14063  Σcsu 14264 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265 This theorem is referenced by:  rpnnen2lem11  14792
 Copyright terms: Public domain W3C validator