Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 9nn | Structured version Visualization version GIF version |
Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
Ref | Expression |
---|---|
9nn | ⊢ 9 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 10963 | . 2 ⊢ 9 = (8 + 1) | |
2 | 8nn 11068 | . . 3 ⊢ 8 ∈ ℕ | |
3 | peano2nn 10909 | . . 3 ⊢ (8 ∈ ℕ → (8 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (8 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2684 | 1 ⊢ 9 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1977 (class class class)co 6549 1c1 9816 + caddc 9818 ℕcn 10897 8c8 10953 9c9 10954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-1cn 9873 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 |
This theorem is referenced by: 10nnOLD 11070 9nn0 11193 9p1e10 11372 10nn 11390 3dvdsdec 14892 3dvdsdecOLD 14893 19prm 15663 prmlem2 15665 37prm 15666 43prm 15667 83prm 15668 139prm 15669 163prm 15670 317prm 15671 631prm 15672 1259lem1 15676 1259lem2 15677 1259lem3 15678 1259lem4 15679 1259lem5 15680 2503lem3 15684 tsetndx 15863 tsetid 15864 topgrpstr 15865 resstset 15869 otpsstr 15874 otpsstrOLD 15878 odrngstr 15889 imasvalstr 15935 ipostr 16976 oppgtset 17605 mgptset 18320 sratset 19005 psrvalstr 19184 cnfldstr 19569 eltpsg 20560 indistpsALT 20627 mcubic 24374 log2cnv 24471 log2tlbnd 24472 log2ublem2 24474 log2ub 24476 bposlem7 24815 ex-cnv 26686 ex-dm 26688 ex-gcd 26706 ex-lcm 26707 ex-prmo 26708 rmydioph 36599 deccarry 39941 257prm 40011 fmtno4nprmfac193 40024 139prmALT 40049 127prm 40053 wtgoldbnnsum4prm 40218 bgoldbnnsum3prm 40220 bgoldbtbndlem1 40221 tgblthelfgott 40229 tgblthelfgottOLD 40236 |
Copyright terms: Public domain | W3C validator |