MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  9nn Structured version   Visualization version   GIF version

Theorem 9nn 11069
Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.)
Assertion
Ref Expression
9nn 9 ∈ ℕ

Proof of Theorem 9nn
StepHypRef Expression
1 df-9 10963 . 2 9 = (8 + 1)
2 8nn 11068 . . 3 8 ∈ ℕ
3 peano2nn 10909 . . 3 (8 ∈ ℕ → (8 + 1) ∈ ℕ)
42, 3ax-mp 5 . 2 (8 + 1) ∈ ℕ
51, 4eqeltri 2684 1 9 ∈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wcel 1977  (class class class)co 6549  1c1 9816   + caddc 9818  cn 10897  8c8 10953  9c9 10954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-1cn 9873
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963
This theorem is referenced by:  10nnOLD  11070  9nn0  11193  9p1e10  11372  10nn  11390  3dvdsdec  14892  3dvdsdecOLD  14893  19prm  15663  prmlem2  15665  37prm  15666  43prm  15667  83prm  15668  139prm  15669  163prm  15670  317prm  15671  631prm  15672  1259lem1  15676  1259lem2  15677  1259lem3  15678  1259lem4  15679  1259lem5  15680  2503lem3  15684  tsetndx  15863  tsetid  15864  topgrpstr  15865  resstset  15869  otpsstr  15874  otpsstrOLD  15878  odrngstr  15889  imasvalstr  15935  ipostr  16976  oppgtset  17605  mgptset  18320  sratset  19005  psrvalstr  19184  cnfldstr  19569  eltpsg  20560  indistpsALT  20627  mcubic  24374  log2cnv  24471  log2tlbnd  24472  log2ublem2  24474  log2ub  24476  bposlem7  24815  ex-cnv  26686  ex-dm  26688  ex-gcd  26706  ex-lcm  26707  ex-prmo  26708  rmydioph  36599  deccarry  39941  257prm  40011  fmtno4nprmfac193  40024  139prmALT  40049  127prm  40053  wtgoldbnnsum4prm  40218  bgoldbnnsum3prm  40220  bgoldbtbndlem1  40221  tgblthelfgott  40229  tgblthelfgottOLD  40236
  Copyright terms: Public domain W3C validator