Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mblfinlem2 Structured version   Visualization version   GIF version

Theorem mblfinlem2 32617
Description: Lemma for ismblfin 32620, effectively one direction of the same fact for open sets, made necessary by Viaclovsky's slightly different defintion of outer measure. Note that unlike the main theorem, this holds for sets of infinite measure. (Contributed by Brendan Leahy, 21-Feb-2018.) (Revised by Brendan Leahy, 13-Jul-2018.)
Assertion
Ref Expression
mblfinlem2 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
Distinct variable groups:   𝐴,𝑠   𝑀,𝑠

Proof of Theorem mblfinlem2
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑚 𝑛 𝑝 𝑡 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 retop 22375 . . . 4 (topGen‘ran (,)) ∈ Top
2 0cld 20652 . . . 4 ((topGen‘ran (,)) ∈ Top → ∅ ∈ (Clsd‘(topGen‘ran (,))))
31, 2ax-mp 5 . . 3 ∅ ∈ (Clsd‘(topGen‘ran (,)))
4 simpl3 1059 . . . . 5 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 = ∅) → 𝑀 < (vol*‘𝐴))
5 fveq2 6103 . . . . . 6 (𝐴 = ∅ → (vol*‘𝐴) = (vol*‘∅))
65adantl 481 . . . . 5 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 = ∅) → (vol*‘𝐴) = (vol*‘∅))
74, 6breqtrd 4609 . . . 4 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 = ∅) → 𝑀 < (vol*‘∅))
8 0ss 3924 . . . 4 ∅ ⊆ 𝐴
97, 8jctil 558 . . 3 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 = ∅) → (∅ ⊆ 𝐴𝑀 < (vol*‘∅)))
10 sseq1 3589 . . . . 5 (𝑠 = ∅ → (𝑠𝐴 ↔ ∅ ⊆ 𝐴))
11 fveq2 6103 . . . . . 6 (𝑠 = ∅ → (vol*‘𝑠) = (vol*‘∅))
1211breq2d 4595 . . . . 5 (𝑠 = ∅ → (𝑀 < (vol*‘𝑠) ↔ 𝑀 < (vol*‘∅)))
1310, 12anbi12d 743 . . . 4 (𝑠 = ∅ → ((𝑠𝐴𝑀 < (vol*‘𝑠)) ↔ (∅ ⊆ 𝐴𝑀 < (vol*‘∅))))
1413rspcev 3282 . . 3 ((∅ ∈ (Clsd‘(topGen‘ran (,))) ∧ (∅ ⊆ 𝐴𝑀 < (vol*‘∅))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
153, 9, 14sylancr 694 . 2 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 = ∅) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
16 mblfinlem1 32616 . . . 4 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
17163ad2antl1 1216 . . 3 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
18 simpl3 1059 . . . . . . . . 9 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → 𝑀 < (vol*‘𝐴))
19 f1ofo 6057 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
20 rnco2 5559 . . . . . . . . . . . . . . . . 17 ran ([,] ∘ 𝑓) = ([,] “ ran 𝑓)
21 forn 6031 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran 𝑓 = {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
2221imaeq2d 5385 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ([,] “ ran 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
2320, 22syl5eq 2656 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
2423unieqd 4382 . . . . . . . . . . . . . . 15 (𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
2519, 24syl 17 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
2625adantl 481 . . . . . . . . . . . . 13 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ran ([,] ∘ 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
27 oveq1 6556 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢 → (𝑥 / (2↑𝑦)) = (𝑢 / (2↑𝑦)))
28 oveq1 6556 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑢 → (𝑥 + 1) = (𝑢 + 1))
2928oveq1d 6564 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢 → ((𝑥 + 1) / (2↑𝑦)) = ((𝑢 + 1) / (2↑𝑦)))
3027, 29opeq12d 4348 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ = ⟨(𝑢 / (2↑𝑦)), ((𝑢 + 1) / (2↑𝑦))⟩)
31 oveq2 6557 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑣 → (2↑𝑦) = (2↑𝑣))
3231oveq2d 6565 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑣 → (𝑢 / (2↑𝑦)) = (𝑢 / (2↑𝑣)))
3331oveq2d 6565 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑣 → ((𝑢 + 1) / (2↑𝑦)) = ((𝑢 + 1) / (2↑𝑣)))
3432, 33opeq12d 4348 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑣 → ⟨(𝑢 / (2↑𝑦)), ((𝑢 + 1) / (2↑𝑦))⟩ = ⟨(𝑢 / (2↑𝑣)), ((𝑢 + 1) / (2↑𝑣))⟩)
3530, 34cbvmpt2v 6633 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) = (𝑢 ∈ ℤ, 𝑣 ∈ ℕ0 ↦ ⟨(𝑢 / (2↑𝑣)), ((𝑢 + 1) / (2↑𝑣))⟩)
36 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑧 → ([,]‘𝑎) = ([,]‘𝑧))
3736sseq1d 3595 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑧 → (([,]‘𝑎) ⊆ ([,]‘𝑐) ↔ ([,]‘𝑧) ⊆ ([,]‘𝑐)))
38 eqeq1 2614 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑧 → (𝑎 = 𝑐𝑧 = 𝑐))
3937, 38imbi12d 333 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑧 → ((([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ (([,]‘𝑧) ⊆ ([,]‘𝑐) → 𝑧 = 𝑐)))
4039ralbidv 2969 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑧 → (∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑧) ⊆ ([,]‘𝑐) → 𝑧 = 𝑐)))
4140cbvrabv 3172 . . . . . . . . . . . . . . 15 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} = {𝑧 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑧) ⊆ ([,]‘𝑐) → 𝑧 = 𝑐)}
42 ssrab2 3650 . . . . . . . . . . . . . . . 16 {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ⊆ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
4342a1i 11 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ⊆ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
4435, 41, 43dyadmbllem 23173 . . . . . . . . . . . . . 14 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
4544adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
4626, 45eqtr4d 2647 . . . . . . . . . . . 12 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ran ([,] ∘ 𝑓) = ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}))
47 opnmbllem0 32615 . . . . . . . . . . . . . 14 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}) = 𝐴)
48473ad2ant1 1075 . . . . . . . . . . . . 13 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}) = 𝐴)
4948adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}) = 𝐴)
5046, 49eqtrd 2644 . . . . . . . . . . 11 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ran ([,] ∘ 𝑓) = 𝐴)
5150fveq2d 6107 . . . . . . . . . 10 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (vol*‘ ran ([,] ∘ 𝑓)) = (vol*‘𝐴))
52 f1of 6050 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
53 ssrab2 3650 . . . . . . . . . . . . . 14 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}
5435dyadf 23165 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
55 frn 5966 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ ( ≤ ∩ (ℝ × ℝ)))
5654, 55ax-mp 5 . . . . . . . . . . . . . . 15 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ ( ≤ ∩ (ℝ × ℝ))
5742, 56sstri 3577 . . . . . . . . . . . . . 14 {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ⊆ ( ≤ ∩ (ℝ × ℝ))
5853, 57sstri 3577 . . . . . . . . . . . . 13 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ ( ≤ ∩ (ℝ × ℝ))
59 fss 5969 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ ( ≤ ∩ (ℝ × ℝ))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
6052, 58, 59sylancl 693 . . . . . . . . . . . 12 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
6153, 42sstri 3577 . . . . . . . . . . . . . . . . . . . 20 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
62 ffvelrn 6265 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
6361, 62sseldi 3566 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (𝑓𝑚) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
6463adantrr 749 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑓𝑚) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
65 ffvelrn 6265 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
6661, 65sseldi 3566 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
6766adantrl 748 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑓𝑧) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
6835dyaddisj 23170 . . . . . . . . . . . . . . . . . 18 (((𝑓𝑚) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ (𝑓𝑧) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
6964, 67, 68syl2anc 691 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
7052, 69sylan 487 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
71 df-3or 1032 . . . . . . . . . . . . . . . 16 ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
7270, 71sylib 207 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
73 elrabi 3328 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑓𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴})
74 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (𝑓𝑚) → ([,]‘𝑎) = ([,]‘(𝑓𝑚)))
7574sseq1d 3595 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = (𝑓𝑚) → (([,]‘𝑎) ⊆ ([,]‘𝑐) ↔ ([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐)))
76 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = (𝑓𝑚) → (𝑎 = 𝑐 ↔ (𝑓𝑚) = 𝑐))
7775, 76imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = (𝑓𝑚) → ((([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐)))
7877ralbidv 2969 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = (𝑓𝑚) → (∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐)))
7978elrab 3331 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ↔ ((𝑓𝑚) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∧ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐)))
8079simprbi 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐))
81 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = (𝑓𝑧) → ([,]‘𝑐) = ([,]‘(𝑓𝑧)))
8281sseq2d 3596 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (𝑓𝑧) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) ↔ ([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧))))
83 eqeq2 2621 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (𝑓𝑧) → ((𝑓𝑚) = 𝑐 ↔ (𝑓𝑚) = (𝑓𝑧)))
8482, 83imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = (𝑓𝑧) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐) ↔ (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) → (𝑓𝑚) = (𝑓𝑧))))
8584rspcva 3280 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∧ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐)) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) → (𝑓𝑚) = (𝑓𝑧)))
8673, 80, 85syl2anr 494 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) → (𝑓𝑚) = (𝑓𝑧)))
87 elrabi 3328 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑓𝑚) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴})
88 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = (𝑓𝑧) → ([,]‘𝑎) = ([,]‘(𝑓𝑧)))
8988sseq1d 3595 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (𝑓𝑧) → (([,]‘𝑎) ⊆ ([,]‘𝑐) ↔ ([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐)))
90 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (𝑓𝑧) → (𝑎 = 𝑐 ↔ (𝑓𝑧) = 𝑐))
9189, 90imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = (𝑓𝑧) → ((([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐)))
9291ralbidv 2969 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = (𝑓𝑧) → (∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐)))
9392elrab 3331 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ↔ ((𝑓𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∧ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐)))
9493simprbi 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐))
95 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑐 = (𝑓𝑚) → ([,]‘𝑐) = ([,]‘(𝑓𝑚)))
9695sseq2d 3596 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = (𝑓𝑚) → (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) ↔ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))))
97 eqeq2 2621 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = (𝑓𝑚) → ((𝑓𝑧) = 𝑐 ↔ (𝑓𝑧) = (𝑓𝑚)))
9896, 97imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (𝑓𝑚) → ((([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐) ↔ (([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) → (𝑓𝑧) = (𝑓𝑚))))
9998rspcva 3280 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓𝑚) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∧ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐)) → (([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) → (𝑓𝑧) = (𝑓𝑚)))
10087, 94, 99syl2an 493 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) → (𝑓𝑧) = (𝑓𝑚)))
101 eqcom 2617 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑧) = (𝑓𝑚) ↔ (𝑓𝑚) = (𝑓𝑧))
102100, 101syl6ib 240 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) → (𝑓𝑚) = (𝑓𝑧)))
10386, 102jaod 394 . . . . . . . . . . . . . . . . . . . 20 (((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) → (𝑓𝑚) = (𝑓𝑧)))
10462, 65, 103syl2an 493 . . . . . . . . . . . . . . . . . . 19 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) ∧ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) → (𝑓𝑚) = (𝑓𝑧)))
105104anandis 869 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) → (𝑓𝑚) = (𝑓𝑧)))
10652, 105sylan 487 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) → (𝑓𝑚) = (𝑓𝑧)))
107 f1of1 6049 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ–1-1→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
108 f1veqaeq 6418 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ–1-1→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑓𝑚) = (𝑓𝑧) → 𝑚 = 𝑧))
109107, 108sylan 487 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑓𝑚) = (𝑓𝑧) → 𝑚 = 𝑧))
110106, 109syld 46 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) → 𝑚 = 𝑧))
111110orim1d 880 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) → (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅)))
11272, 111mpd 15 . . . . . . . . . . . . . 14 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
113112ralrimivva 2954 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
114 eqeq1 2614 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑧 → (𝑚 = 𝑝𝑧 = 𝑝))
115 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑧 → (𝑓𝑚) = (𝑓𝑧))
116115fveq2d 6107 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑧 → ((,)‘(𝑓𝑚)) = ((,)‘(𝑓𝑧)))
117116ineq1d 3775 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑧 → (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))))
118117eqeq1d 2612 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑧 → ((((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅ ↔ (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))) = ∅))
119114, 118orbi12d 742 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑧 → ((𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅) ↔ (𝑧 = 𝑝 ∨ (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))) = ∅)))
120119ralbidv 2969 . . . . . . . . . . . . . . 15 (𝑚 = 𝑧 → (∀𝑝 ∈ ℕ (𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅) ↔ ∀𝑝 ∈ ℕ (𝑧 = 𝑝 ∨ (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))) = ∅)))
121120cbvralv 3147 . . . . . . . . . . . . . 14 (∀𝑚 ∈ ℕ ∀𝑝 ∈ ℕ (𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅) ↔ ∀𝑧 ∈ ℕ ∀𝑝 ∈ ℕ (𝑧 = 𝑝 ∨ (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))) = ∅))
122 eqeq2 2621 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑝 → (𝑚 = 𝑧𝑚 = 𝑝))
123 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑝 → (𝑓𝑧) = (𝑓𝑝))
124123fveq2d 6107 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑝 → ((,)‘(𝑓𝑧)) = ((,)‘(𝑓𝑝)))
125124ineq2d 3776 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑝 → (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))))
126125eqeq1d 2612 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑝 → ((((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅ ↔ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅))
127122, 126orbi12d 742 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑝 → ((𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ (𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅)))
128127cbvralv 3147 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ ∀𝑝 ∈ ℕ (𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅))
129128ralbii 2963 . . . . . . . . . . . . . 14 (∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ ∀𝑚 ∈ ℕ ∀𝑝 ∈ ℕ (𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅))
130124disjor 4567 . . . . . . . . . . . . . 14 (Disj 𝑧 ∈ ℕ ((,)‘(𝑓𝑧)) ↔ ∀𝑧 ∈ ℕ ∀𝑝 ∈ ℕ (𝑧 = 𝑝 ∨ (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))) = ∅))
131121, 129, 1303bitr4ri 292 . . . . . . . . . . . . 13 (Disj 𝑧 ∈ ℕ ((,)‘(𝑓𝑧)) ↔ ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
132113, 131sylibr 223 . . . . . . . . . . . 12 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → Disj 𝑧 ∈ ℕ ((,)‘(𝑓𝑧)))
133 eqid 2610 . . . . . . . . . . . 12 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
13460, 132, 133uniiccvol 23154 . . . . . . . . . . 11 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (vol*‘ ran ([,] ∘ 𝑓)) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
135134adantl 481 . . . . . . . . . 10 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (vol*‘ ran ([,] ∘ 𝑓)) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
13651, 135eqtr3d 2646 . . . . . . . . 9 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (vol*‘𝐴) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
13718, 136breqtrd 4609 . . . . . . . 8 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → 𝑀 < sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
138 absf 13925 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
139 subf 10162 . . . . . . . . . . . 12 − :(ℂ × ℂ)⟶ℂ
140 fco 5971 . . . . . . . . . . . 12 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
141138, 139, 140mp2an 704 . . . . . . . . . . 11 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
142 zre 11258 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
143 2re 10967 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ
144 reexpcl 12739 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℝ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℝ)
145143, 144mpan 702 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℕ0 → (2↑𝑦) ∈ ℝ)
146 2cn 10968 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℂ
147 2ne0 10990 . . . . . . . . . . . . . . . . . . . . 21 2 ≠ 0
148 nn0z 11277 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
149 expne0i 12754 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 𝑦 ∈ ℤ) → (2↑𝑦) ≠ 0)
150146, 147, 148, 149mp3an12i 1420 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℕ0 → (2↑𝑦) ≠ 0)
151145, 150jca 553 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ0 → ((2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0))
152 redivcl 10623 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ (2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0) → (𝑥 / (2↑𝑦)) ∈ ℝ)
153 peano2re 10088 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
154 redivcl 10623 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 + 1) ∈ ℝ ∧ (2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0) → ((𝑥 + 1) / (2↑𝑦)) ∈ ℝ)
155153, 154syl3an1 1351 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ (2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0) → ((𝑥 + 1) / (2↑𝑦)) ∈ ℝ)
156152, 155opelxpd 5073 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ (2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ))
1571563expb 1258 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ ((2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0)) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ))
158142, 151, 157syl2an 493 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ))
159158rgen2 2958 . . . . . . . . . . . . . . . . 17 𝑥 ∈ ℤ ∀𝑦 ∈ ℕ0 ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ)
160 eqid 2610 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
161160fmpt2 7126 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ0 ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ) ↔ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶(ℝ × ℝ))
162159, 161mpbi 219 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶(ℝ × ℝ)
163 frn 5966 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶(ℝ × ℝ) → ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ (ℝ × ℝ))
164162, 163ax-mp 5 . . . . . . . . . . . . . . 15 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ (ℝ × ℝ)
16542, 164sstri 3577 . . . . . . . . . . . . . 14 {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ⊆ (ℝ × ℝ)
16653, 165sstri 3577 . . . . . . . . . . . . 13 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ (ℝ × ℝ)
167 ax-resscn 9872 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
168 xpss12 5148 . . . . . . . . . . . . . 14 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ))
169167, 167, 168mp2an 704 . . . . . . . . . . . . 13 (ℝ × ℝ) ⊆ (ℂ × ℂ)
170166, 169sstri 3577 . . . . . . . . . . . 12 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ (ℂ × ℂ)
171 fss 5969 . . . . . . . . . . . 12 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ (ℂ × ℂ)) → 𝑓:ℕ⟶(ℂ × ℂ))
172170, 171mpan2 703 . . . . . . . . . . 11 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ⟶(ℂ × ℂ))
173 fco 5971 . . . . . . . . . . 11 (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ 𝑓:ℕ⟶(ℂ × ℂ)) → ((abs ∘ − ) ∘ 𝑓):ℕ⟶ℝ)
174141, 172, 173sylancr 694 . . . . . . . . . 10 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ((abs ∘ − ) ∘ 𝑓):ℕ⟶ℝ)
175 nnuz 11599 . . . . . . . . . . 11 ℕ = (ℤ‘1)
176 1z 11284 . . . . . . . . . . . 12 1 ∈ ℤ
177176a1i 11 . . . . . . . . . . 11 (((abs ∘ − ) ∘ 𝑓):ℕ⟶ℝ → 1 ∈ ℤ)
178 ffvelrn 6265 . . . . . . . . . . 11 ((((abs ∘ − ) ∘ 𝑓):ℕ⟶ℝ ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑛) ∈ ℝ)
179175, 177, 178serfre 12692 . . . . . . . . . 10 (((abs ∘ − ) ∘ 𝑓):ℕ⟶ℝ → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ)
180 frn 5966 . . . . . . . . . . 11 (seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ)
181 ressxr 9962 . . . . . . . . . . 11 ℝ ⊆ ℝ*
182180, 181syl6ss 3580 . . . . . . . . . 10 (seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*)
18352, 174, 179, 1824syl 19 . . . . . . . . 9 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*)
184 rexr 9964 . . . . . . . . . 10 (𝑀 ∈ ℝ → 𝑀 ∈ ℝ*)
1851843ad2ant2 1076 . . . . . . . . 9 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → 𝑀 ∈ ℝ*)
186 supxrlub 12027 . . . . . . . . 9 ((ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*𝑀 ∈ ℝ*) → (𝑀 < sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ↔ ∃𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧))
187183, 185, 186syl2anr 494 . . . . . . . 8 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (𝑀 < sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ↔ ∃𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧))
188137, 187mpbid 221 . . . . . . 7 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧)
189 seqfn 12675 . . . . . . . . . 10 (1 ∈ ℤ → seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn (ℤ‘1))
190176, 189ax-mp 5 . . . . . . . . 9 seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn (ℤ‘1)
191175fneq2i 5900 . . . . . . . . 9 (seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ ↔ seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn (ℤ‘1))
192190, 191mpbir 220 . . . . . . . 8 seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ
193 breq2 4587 . . . . . . . . 9 (𝑧 = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) → (𝑀 < 𝑧𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
194193rexrn 6269 . . . . . . . 8 (seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ → (∃𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧 ↔ ∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
195192, 194ax-mp 5 . . . . . . 7 (∃𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧 ↔ ∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
196188, 195sylib 207 . . . . . 6 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
19760ffvelrnda 6267 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ ( ≤ ∩ (ℝ × ℝ)))
198 0le0 10987 . . . . . . . . . . . . . . . . . 18 0 ≤ 0
199 df-br 4584 . . . . . . . . . . . . . . . . . 18 (0 ≤ 0 ↔ ⟨0, 0⟩ ∈ ≤ )
200198, 199mpbi 219 . . . . . . . . . . . . . . . . 17 ⟨0, 0⟩ ∈ ≤
201 0re 9919 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
202 opelxpi 5072 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → ⟨0, 0⟩ ∈ (ℝ × ℝ))
203201, 201, 202mp2an 704 . . . . . . . . . . . . . . . . 17 ⟨0, 0⟩ ∈ (ℝ × ℝ)
204 elin 3758 . . . . . . . . . . . . . . . . 17 (⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ (⟨0, 0⟩ ∈ ≤ ∧ ⟨0, 0⟩ ∈ (ℝ × ℝ)))
205200, 203, 204mpbir2an 957 . . . . . . . . . . . . . . . 16 ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ))
206 ifcl 4080 . . . . . . . . . . . . . . . 16 (((𝑓𝑧) ∈ ( ≤ ∩ (ℝ × ℝ)) ∧ ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ))) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ ( ≤ ∩ (ℝ × ℝ)))
207197, 205, 206sylancl 693 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ ( ≤ ∩ (ℝ × ℝ)))
208 eqid 2610 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))
209207, 208fmptd 6292 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
210 df-ov 6552 . . . . . . . . . . . . . . . . . . . . . 22 (0(,)0) = ((,)‘⟨0, 0⟩)
211 iooid 12074 . . . . . . . . . . . . . . . . . . . . . 22 (0(,)0) = ∅
212210, 211eqtr3i 2634 . . . . . . . . . . . . . . . . . . . . 21 ((,)‘⟨0, 0⟩) = ∅
213212ineq1i 3772 . . . . . . . . . . . . . . . . . . . 20 (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = (∅ ∩ ((,)‘(𝑓𝑧)))
214 0in 3921 . . . . . . . . . . . . . . . . . . . 20 (∅ ∩ ((,)‘(𝑓𝑧))) = ∅
215213, 214eqtri 2632 . . . . . . . . . . . . . . . . . . 19 (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = ∅
216215olci 405 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑧 ∨ (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = ∅)
217 ineq1 3769 . . . . . . . . . . . . . . . . . . . . 21 (((,)‘(𝑓𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))))
218217eqeq1d 2612 . . . . . . . . . . . . . . . . . . . 20 (((,)‘(𝑓𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → ((((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅ ↔ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅))
219218orbi2d 734 . . . . . . . . . . . . . . . . . . 19 (((,)‘(𝑓𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → ((𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅)))
220 ineq1 3769 . . . . . . . . . . . . . . . . . . . . 21 (((,)‘⟨0, 0⟩) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))))
221220eqeq1d 2612 . . . . . . . . . . . . . . . . . . . 20 (((,)‘⟨0, 0⟩) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → ((((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = ∅ ↔ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅))
222221orbi2d 734 . . . . . . . . . . . . . . . . . . 19 (((,)‘⟨0, 0⟩) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → ((𝑚 = 𝑧 ∨ (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅)))
223219, 222ifboth 4074 . . . . . . . . . . . . . . . . . 18 (((𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ∧ (𝑚 = 𝑧 ∨ (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = ∅)) → (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅))
224112, 216, 223sylancl 693 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅))
225212ineq2i 3773 . . . . . . . . . . . . . . . . . . 19 (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ∅)
226 in0 3920 . . . . . . . . . . . . . . . . . . 19 (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ∅) = ∅
227225, 226eqtri 2632 . . . . . . . . . . . . . . . . . 18 (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = ∅
228227olci 405 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = ∅)
229 ineq2 3770 . . . . . . . . . . . . . . . . . . . 20 (((,)‘(𝑓𝑧)) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))))
230229eqeq1d 2612 . . . . . . . . . . . . . . . . . . 19 (((,)‘(𝑓𝑧)) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → ((if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅ ↔ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
231230orbi2d 734 . . . . . . . . . . . . . . . . . 18 (((,)‘(𝑓𝑧)) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → ((𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅)))
232 ineq2 3770 . . . . . . . . . . . . . . . . . . . 20 (((,)‘⟨0, 0⟩) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))))
233232eqeq1d 2612 . . . . . . . . . . . . . . . . . . 19 (((,)‘⟨0, 0⟩) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → ((if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = ∅ ↔ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
234233orbi2d 734 . . . . . . . . . . . . . . . . . 18 (((,)‘⟨0, 0⟩) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → ((𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = ∅) ↔ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅)))
235231, 234ifboth 4074 . . . . . . . . . . . . . . . . 17 (((𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅) ∧ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = ∅)) → (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
236224, 228, 235sylancl 693 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
237236ralrimivva 2954 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
238 disjeq2 4557 . . . . . . . . . . . . . . . . 17 (∀𝑚 ∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → (Disj 𝑚 ∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) ↔ Disj 𝑚 ∈ ℕ if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩))))
239 eleq1 2676 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑚 → (𝑧 ∈ (1...𝑛) ↔ 𝑚 ∈ (1...𝑛)))
240 fveq2 6103 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑚 → (𝑓𝑧) = (𝑓𝑚))
241239, 240ifbieq1d 4059 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑚 → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩))
242 fvex 6113 . . . . . . . . . . . . . . . . . . . . 21 (𝑓𝑚) ∈ V
243 opex 4859 . . . . . . . . . . . . . . . . . . . . 21 ⟨0, 0⟩ ∈ V
244242, 243ifex 4106 . . . . . . . . . . . . . . . . . . . 20 if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩) ∈ V
245241, 208, 244fvmpt 6191 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩))
246245fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = ((,)‘if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩)))
247 fvif 6114 . . . . . . . . . . . . . . . . . 18 ((,)‘if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩))
248246, 247syl6eq 2660 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)))
249238, 248mprg 2910 . . . . . . . . . . . . . . . 16 (Disj 𝑚 ∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) ↔ Disj 𝑚 ∈ ℕ if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)))
250 eleq1 2676 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑧 → (𝑚 ∈ (1...𝑛) ↔ 𝑧 ∈ (1...𝑛)))
251250, 116ifbieq1d 4059 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑧 → if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)))
252251disjor 4567 . . . . . . . . . . . . . . . 16 (Disj 𝑚 ∈ ℕ if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ↔ ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
253249, 252bitri 263 . . . . . . . . . . . . . . 15 (Disj 𝑚 ∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) ↔ ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
254237, 253sylibr 223 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → Disj 𝑚 ∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
255 eqid 2610 . . . . . . . . . . . . . 14 seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) = seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))
256209, 254, 255uniiccvol 23154 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (vol*‘ ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))), ℝ*, < ))
257256adantr 480 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘ ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))), ℝ*, < ))
258 rexpssxrxp 9963 . . . . . . . . . . . . . . . . . . . . 21 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
259166, 258sstri 3577 . . . . . . . . . . . . . . . . . . . 20 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ (ℝ* × ℝ*)
260259, 65sseldi 3566 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ (ℝ* × ℝ*))
261 0xr 9965 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℝ*
262 opelxpi 5072 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ* ∧ 0 ∈ ℝ*) → ⟨0, 0⟩ ∈ (ℝ* × ℝ*))
263261, 261, 262mp2an 704 . . . . . . . . . . . . . . . . . . 19 ⟨0, 0⟩ ∈ (ℝ* × ℝ*)
264 ifcl 4080 . . . . . . . . . . . . . . . . . . 19 (((𝑓𝑧) ∈ (ℝ* × ℝ*) ∧ ⟨0, 0⟩ ∈ (ℝ* × ℝ*)) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ (ℝ* × ℝ*))
265260, 263, 264sylancl 693 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ (ℝ* × ℝ*))
266 eqidd 2611 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
267 iccf 12143 . . . . . . . . . . . . . . . . . . . 20 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
268267a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*)
269268feqmptd 6159 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → [,] = (𝑚 ∈ (ℝ* × ℝ*) ↦ ([,]‘𝑚)))
270 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑚 = if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) → ([,]‘𝑚) = ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
271265, 266, 269, 270fmptco 6303 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))
27252, 271syl 17 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))
273272rneqd 5274 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))
274273unieqd 4382 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))
275 peano2nn 10909 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
276275, 175syl6eleq 2698 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ (ℤ‘1))
277 fzouzsplit 12372 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 + 1) ∈ (ℤ‘1) → (ℤ‘1) = ((1..^(𝑛 + 1)) ∪ (ℤ‘(𝑛 + 1))))
278276, 277syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (ℤ‘1) = ((1..^(𝑛 + 1)) ∪ (ℤ‘(𝑛 + 1))))
279175, 278syl5eq 2656 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ℕ = ((1..^(𝑛 + 1)) ∪ (ℤ‘(𝑛 + 1))))
280 nnz 11276 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
281 fzval3 12404 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℤ → (1...𝑛) = (1..^(𝑛 + 1)))
282280, 281syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (1...𝑛) = (1..^(𝑛 + 1)))
283282uneq1d 3728 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((1...𝑛) ∪ (ℤ‘(𝑛 + 1))) = ((1..^(𝑛 + 1)) ∪ (ℤ‘(𝑛 + 1))))
284279, 283eqtr4d 2647 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ℕ = ((1...𝑛) ∪ (ℤ‘(𝑛 + 1))))
285 fvif 6114 . . . . . . . . . . . . . . . . . 18 ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩))
286285a1i 11 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)))
287284, 286iuneq12d 4482 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑧 ∈ ℕ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = 𝑧 ∈ ((1...𝑛) ∪ (ℤ‘(𝑛 + 1)))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)))
288 fvex 6113 . . . . . . . . . . . . . . . . 17 ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) ∈ V
289288dfiun3 5301 . . . . . . . . . . . . . . . 16 𝑧 ∈ ℕ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
290 iunxun 4541 . . . . . . . . . . . . . . . 16 𝑧 ∈ ((1...𝑛) ∪ (ℤ‘(𝑛 + 1)))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = ( 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)))
291287, 289, 2903eqtr3g 2667 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = ( 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩))))
292 iftrue 4042 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (1...𝑛) → if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = ([,]‘(𝑓𝑧)))
293292iuneq2i 4475 . . . . . . . . . . . . . . . . 17 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))
294293a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))
295 uznfz 12292 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (ℤ‘(𝑛 + 1)) → ¬ 𝑧 ∈ (1...((𝑛 + 1) − 1)))
296295adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑧 ∈ (ℤ‘(𝑛 + 1))) → ¬ 𝑧 ∈ (1...((𝑛 + 1) − 1)))
297 nncn 10905 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
298 ax-1cn 9873 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℂ
299 pncan 10166 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
300297, 298, 299sylancl 693 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → ((𝑛 + 1) − 1) = 𝑛)
301300oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → (1...((𝑛 + 1) − 1)) = (1...𝑛))
302301eleq2d 2673 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (𝑧 ∈ (1...((𝑛 + 1) − 1)) ↔ 𝑧 ∈ (1...𝑛)))
303302notbid 307 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (¬ 𝑧 ∈ (1...((𝑛 + 1) − 1)) ↔ ¬ 𝑧 ∈ (1...𝑛)))
304303adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑧 ∈ (ℤ‘(𝑛 + 1))) → (¬ 𝑧 ∈ (1...((𝑛 + 1) − 1)) ↔ ¬ 𝑧 ∈ (1...𝑛)))
305296, 304mpbid 221 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ 𝑧 ∈ (ℤ‘(𝑛 + 1))) → ¬ 𝑧 ∈ (1...𝑛))
306305iffalsed 4047 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑧 ∈ (ℤ‘(𝑛 + 1))) → if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = ([,]‘⟨0, 0⟩))
307306iuneq2dv 4478 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑧 ∈ (ℤ‘(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩))
308294, 307uneq12d 3730 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ( 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩))) = ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)))
309291, 308eqtrd 2644 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)))
310274, 309sylan9eq 2664 . . . . . . . . . . . . 13 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)))
311310fveq2d 6107 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘ ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) = (vol*‘( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩))))
312 xrltso 11850 . . . . . . . . . . . . . . 15 < Or ℝ*
313312a1i 11 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → < Or ℝ*)
314 elnnuz 11600 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
315314biimpi 205 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
316315adantl 481 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
317 elfznn 12241 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (1...𝑛) → 𝑢 ∈ ℕ)
318174ffvelrnda 6267 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑢 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑢) ∈ ℝ)
319317, 318sylan2 490 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑢 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑢) ∈ ℝ)
320319adantlr 747 . . . . . . . . . . . . . . . 16 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑢 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑢) ∈ ℝ)
321 readdcl 9898 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ ℝ)
322321adantl 481 . . . . . . . . . . . . . . . 16 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑢 + 𝑣) ∈ ℝ)
323316, 320, 322seqcl 12683 . . . . . . . . . . . . . . 15 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ)
324323rexrd 9968 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ*)
325 eqidd 2611 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (1...𝑛) → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
326 iftrue 4042 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ (1...𝑛) → if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩) = (𝑓𝑚))
327241, 326sylan9eqr 2666 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 ∈ (1...𝑛) ∧ 𝑧 = 𝑚) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = (𝑓𝑚))
328 elfznn 12241 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (1...𝑛) → 𝑚 ∈ ℕ)
329242a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (1...𝑛) → (𝑓𝑚) ∈ V)
330325, 327, 328, 329fvmptd 6197 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (1...𝑛) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = (𝑓𝑚))
331330adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = (𝑓𝑚))
332331fveq2d 6107 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = ((abs ∘ − )‘(𝑓𝑚)))
333 fvex 6113 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓𝑧) ∈ V
334333, 243ifex 4106 . . . . . . . . . . . . . . . . . . . . 21 if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ V
335334, 208fnmpti 5935 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) Fn ℕ
336 fvco2 6183 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) Fn ℕ ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
337335, 328, 336sylancr 694 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (1...𝑛) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
338337adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
339 ffn 5958 . . . . . . . . . . . . . . . . . . 19 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓 Fn ℕ)
340 fvco2 6183 . . . . . . . . . . . . . . . . . . 19 ((𝑓 Fn ℕ ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) = ((abs ∘ − )‘(𝑓𝑚)))
341339, 328, 340syl2an 493 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) = ((abs ∘ − )‘(𝑓𝑚)))
342332, 338, 3413eqtr4d 2654 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = (((abs ∘ − ) ∘ 𝑓)‘𝑚))
343342adantlr 747 . . . . . . . . . . . . . . . 16 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = (((abs ∘ − ) ∘ 𝑓)‘𝑚))
344316, 343seqfveq 12687 . . . . . . . . . . . . . . 15 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
345176a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 1 ∈ ℤ)
346170, 65sseldi 3566 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ (ℂ × ℂ))
347 0cn 9911 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℂ
348 opelxpi 5072 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℂ ∧ 0 ∈ ℂ) → ⟨0, 0⟩ ∈ (ℂ × ℂ))
349347, 347, 348mp2an 704 . . . . . . . . . . . . . . . . . . . . . 22 ⟨0, 0⟩ ∈ (ℂ × ℂ)
350 ifcl 4080 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓𝑧) ∈ (ℂ × ℂ) ∧ ⟨0, 0⟩ ∈ (ℂ × ℂ)) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ (ℂ × ℂ))
351346, 349, 350sylancl 693 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ (ℂ × ℂ))
352351, 208fmptd 6292 . . . . . . . . . . . . . . . . . . . 20 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)):ℕ⟶(ℂ × ℂ))
353 fco 5971 . . . . . . . . . . . . . . . . . . . 20 (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)):ℕ⟶(ℂ × ℂ)) → ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))):ℕ⟶ℝ)
354141, 352, 353sylancr 694 . . . . . . . . . . . . . . . . . . 19 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))):ℕ⟶ℝ)
355354ffvelrnda 6267 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) ∈ ℝ)
356175, 345, 355serfre 12692 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))):ℕ⟶ℝ)
357356ffnd 5959 . . . . . . . . . . . . . . . 16 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) Fn ℕ)
358 fnfvelrn 6264 . . . . . . . . . . . . . . . 16 ((seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) Fn ℕ ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))))
359357, 358sylan 487 . . . . . . . . . . . . . . 15 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))))
360344, 359eqeltrrd 2689 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))))
361 frn 5966 . . . . . . . . . . . . . . . . . 18 (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))):ℕ⟶ℝ → ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) ⊆ ℝ)
362356, 361syl 17 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) ⊆ ℝ)
363362adantr 480 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) ⊆ ℝ)
364363sselda 3568 . . . . . . . . . . . . . . 15 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))) → 𝑚 ∈ ℝ)
365323adantr 480 . . . . . . . . . . . . . . 15 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ)
366 readdcl 9898 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑚 + 𝑢) ∈ ℝ)
367366adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ (𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → (𝑚 + 𝑢) ∈ ℝ)
368 recn 9905 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ ℝ → 𝑚 ∈ ℂ)
369 recn 9905 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 ∈ ℝ → 𝑢 ∈ ℂ)
370 recn 9905 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 ∈ ℝ → 𝑣 ∈ ℂ)
371 addass 9902 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 ∈ ℂ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → ((𝑚 + 𝑢) + 𝑣) = (𝑚 + (𝑢 + 𝑣)))
372368, 369, 370, 371syl3an 1360 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝑚 + 𝑢) + 𝑣) = (𝑚 + (𝑢 + 𝑣)))
373372adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ (𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → ((𝑚 + 𝑢) + 𝑣) = (𝑚 + (𝑢 + 𝑣)))
374 nnltp1le 11310 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑛 < 𝑡 ↔ (𝑛 + 1) ≤ 𝑡))
375374biimpa 500 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (𝑛 + 1) ≤ 𝑡)
376275nnzd 11357 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℤ)
377 nnz 11276 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ ℕ → 𝑡 ∈ ℤ)
378 eluz 11577 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 + 1) ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑡 ∈ (ℤ‘(𝑛 + 1)) ↔ (𝑛 + 1) ≤ 𝑡))
379376, 377, 378syl2an 493 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑡 ∈ (ℤ‘(𝑛 + 1)) ↔ (𝑛 + 1) ≤ 𝑡))
380379adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (𝑡 ∈ (ℤ‘(𝑛 + 1)) ↔ (𝑛 + 1) ≤ 𝑡))
381375, 380mpbird 246 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → 𝑡 ∈ (ℤ‘(𝑛 + 1)))
382381adantlll 750 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → 𝑡 ∈ (ℤ‘(𝑛 + 1)))
383315ad3antlr 763 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → 𝑛 ∈ (ℤ‘1))
384 simplll 794 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → 𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
385 elfznn 12241 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (1...𝑡) → 𝑚 ∈ ℕ)
386384, 385, 355syl2an 493 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ (1...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) ∈ ℝ)
387367, 373, 382, 383, 386seqsplit 12696 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = ((seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) + (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡)))
388344ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
389 elfzelz 12213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 ∈ ((𝑛 + 1)...𝑡) → 𝑚 ∈ ℤ)
390389adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℤ)
391 0red 9920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 ∈ ℝ)
392275nnred 10912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ)
393392ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 + 1) ∈ ℝ)
394389zred 11358 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 ∈ ((𝑛 + 1)...𝑡) → 𝑚 ∈ ℝ)
395394adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℝ)
396275nngt0d 10941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 ∈ ℕ → 0 < (𝑛 + 1))
397396ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 < (𝑛 + 1))
398 elfzle1 12215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 ∈ ((𝑛 + 1)...𝑡) → (𝑛 + 1) ≤ 𝑚)
399398adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 + 1) ≤ 𝑚)
400391, 393, 395, 397, 399ltletrd 10076 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 < 𝑚)
401 elnnz 11264 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 ∈ ℕ ↔ (𝑚 ∈ ℤ ∧ 0 < 𝑚))
402390, 400, 401sylanbrc 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℕ)
403335, 402, 336sylancr 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
404 eqidd 2611 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
405 nnre 10904 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
406405adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑛 ∈ ℝ)
407392adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 + 1) ∈ ℝ)
408394adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℝ)
409405ltp1d 10833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 ∈ ℕ → 𝑛 < (𝑛 + 1))
410409adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑛 < (𝑛 + 1))
411398adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 + 1) ≤ 𝑚)
412406, 407, 408, 410, 411ltletrd 10076 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑛 < 𝑚)
413412adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → 𝑛 < 𝑚)
414406, 408ltnled 10063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 < 𝑚 ↔ ¬ 𝑚𝑛))
415 breq1 4586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑚 = 𝑧 → (𝑚𝑛𝑧𝑛))
416415equcoms 1934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑧 = 𝑚 → (𝑚𝑛𝑧𝑛))
417416notbid 307 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑧 = 𝑚 → (¬ 𝑚𝑛 ↔ ¬ 𝑧𝑛))
418414, 417sylan9bb 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → (𝑛 < 𝑚 ↔ ¬ 𝑧𝑛))
419413, 418mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → ¬ 𝑧𝑛)
420 elfzle2 12216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 ∈ (1...𝑛) → 𝑧𝑛)
421419, 420nsyl 134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → ¬ 𝑧 ∈ (1...𝑛))
422421iffalsed 4047 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = ⟨0, 0⟩)
423389adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℤ)
424 0red 9920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 ∈ ℝ)
425396adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 < (𝑛 + 1))
426424, 407, 408, 425, 411ltletrd 10076 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 < 𝑚)
427423, 426, 401sylanbrc 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℕ)
428243a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → ⟨0, 0⟩ ∈ V)
429404, 422, 427, 428fvmptd 6197 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = ⟨0, 0⟩)
430429ad4ant14 1285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = ⟨0, 0⟩)
431430fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = ((abs ∘ − )‘⟨0, 0⟩))
432403, 431eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘⟨0, 0⟩))
433 fvco3 6185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (( − :(ℂ × ℂ)⟶ℂ ∧ ⟨0, 0⟩ ∈ (ℂ × ℂ)) → ((abs ∘ − )‘⟨0, 0⟩) = (abs‘( − ‘⟨0, 0⟩)))
434139, 349, 433mp2an 704 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((abs ∘ − )‘⟨0, 0⟩) = (abs‘( − ‘⟨0, 0⟩))
435 df-ov 6552 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (0 − 0) = ( − ‘⟨0, 0⟩)
436 0m0e0 11007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (0 − 0) = 0
437435, 436eqtr3i 2634 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ( − ‘⟨0, 0⟩) = 0
438437fveq2i 6106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (abs‘( − ‘⟨0, 0⟩)) = (abs‘0)
439 abs0 13873 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (abs‘0) = 0
440438, 439eqtri 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (abs‘( − ‘⟨0, 0⟩)) = 0
441434, 440eqtri 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((abs ∘ − )‘⟨0, 0⟩) = 0
442432, 441syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = 0)
443 elfzuz 12209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑚 ∈ ((𝑛 + 1)...𝑡) → 𝑚 ∈ (ℤ‘(𝑛 + 1)))
444 c0ex 9913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 ∈ V
445444fvconst2 6374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑚 ∈ (ℤ‘(𝑛 + 1)) → (((ℤ‘(𝑛 + 1)) × {0})‘𝑚) = 0)
446443, 445syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ ((𝑛 + 1)...𝑡) → (((ℤ‘(𝑛 + 1)) × {0})‘𝑚) = 0)
447446adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((ℤ‘(𝑛 + 1)) × {0})‘𝑚) = 0)
448442, 447eqtr4d 2647 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = (((ℤ‘(𝑛 + 1)) × {0})‘𝑚))
449381, 448seqfveq 12687 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = (seq(𝑛 + 1)( + , ((ℤ‘(𝑛 + 1)) × {0}))‘𝑡))
450 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑛 + 1))
451450ser0 12715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ (ℤ‘(𝑛 + 1)) → (seq(𝑛 + 1)( + , ((ℤ‘(𝑛 + 1)) × {0}))‘𝑡) = 0)
452381, 451syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq(𝑛 + 1)( + , ((ℤ‘(𝑛 + 1)) × {0}))‘𝑡) = 0)
453449, 452eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = 0)
454453adantlll 750 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = 0)
455388, 454oveq12d 6567 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → ((seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) + (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡)) = ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) + 0))
456174ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
457328, 456sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
458457adantlr 747 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
459 readdcl 9898 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑚 + 𝑣) ∈ ℝ)
460459adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ (𝑚 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑚 + 𝑣) ∈ ℝ)
461316, 458, 460seqcl 12683 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ)
462461ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ)
463462recnd 9947 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℂ)
464463addid1d 10115 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) + 0) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
465455, 464eqtrd 2644 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → ((seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) + (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡)) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
466387, 465eqtrd 2644 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
467456ad5ant15 1295 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
468328, 467sylan2 490 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
469383, 468, 367seqcl 12683 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ)
470469leidd 10473 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
471466, 470eqbrtrd 4605 . . . . . . . . . . . . . . . . . . 19 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
472 elnnuz 11600 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ ℕ ↔ 𝑡 ∈ (ℤ‘1))
473472biimpi 205 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ ℕ → 𝑡 ∈ (ℤ‘1))
474473ad2antlr 759 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → 𝑡 ∈ (ℤ‘1))
475 eqidd 2611 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
476 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → 𝑧 = 𝑚)
477 elfzle1 12215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 ∈ (1...𝑡) → 1 ≤ 𝑚)
478477adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 1 ≤ 𝑚)
479385nnred 10912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 ∈ (1...𝑡) → 𝑚 ∈ ℝ)
480479adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ∈ ℝ)
481 nnre 10904 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 ∈ ℕ → 𝑡 ∈ ℝ)
482481ad3antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑡 ∈ ℝ)
483405ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑛 ∈ ℝ)
484 elfzle2 12216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 ∈ (1...𝑡) → 𝑚𝑡)
485484adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚𝑡)
486 simplr 788 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑡𝑛)
487480, 482, 483, 485, 486letrd 10073 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚𝑛)
488 elfzelz 12213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 ∈ (1...𝑡) → 𝑚 ∈ ℤ)
489280ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → 𝑛 ∈ ℤ)
490 elfz 12203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑚 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 ∈ (1...𝑛) ↔ (1 ≤ 𝑚𝑚𝑛)))
491176, 490mp3an2 1404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 ∈ (1...𝑛) ↔ (1 ≤ 𝑚𝑚𝑛)))
492488, 489, 491syl2anr 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (𝑚 ∈ (1...𝑛) ↔ (1 ≤ 𝑚𝑚𝑛)))
493478, 487, 492mpbir2and 959 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ∈ (1...𝑛))
494493ad5ant2345 1309 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ∈ (1...𝑛))
495494adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → 𝑚 ∈ (1...𝑛))
496476, 495eqeltrd 2688 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → 𝑧 ∈ (1...𝑛))
497 iftrue 4042 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ (1...𝑛) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = (𝑓𝑧))
498496, 497syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = (𝑓𝑧))
499240adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → (𝑓𝑧) = (𝑓𝑚))
500498, 499eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = (𝑓𝑚))
501385adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ∈ ℕ)
502242a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (𝑓𝑚) ∈ V)
503475, 500, 501, 502fvmptd 6197 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = (𝑓𝑚))
504503fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = ((abs ∘ − )‘(𝑓𝑚)))
505335, 385, 336sylancr 694 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (1...𝑡) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
506505adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
507 simplll 794 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → 𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
508 fvco3 6185 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) = ((abs ∘ − )‘(𝑓𝑚)))
509507, 385, 508syl2an 493 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) = ((abs ∘ − )‘(𝑓𝑚)))
510504, 506, 5093eqtr4d 2654 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = (((abs ∘ − ) ∘ 𝑓)‘𝑚))
511474, 510seqfveq 12687 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑡))
512 eluz 11577 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ∈ (ℤ𝑡) ↔ 𝑡𝑛))
513377, 280, 512syl2anr 494 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑛 ∈ (ℤ𝑡) ↔ 𝑡𝑛))
514513biimpar 501 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → 𝑛 ∈ (ℤ𝑡))
515514adantlll 750 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → 𝑛 ∈ (ℤ𝑡))
516507, 328, 456syl2an 493 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
517 elfzelz 12213 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ ((𝑡 + 1)...𝑛) → 𝑚 ∈ ℤ)
518517adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℤ)
519 0red 9920 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 0 ∈ ℝ)
520 peano2nn 10909 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 ∈ ℕ → (𝑡 + 1) ∈ ℕ)
521520nnred 10912 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ ℕ → (𝑡 + 1) ∈ ℝ)
522521adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → (𝑡 + 1) ∈ ℝ)
523517zred 11358 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ((𝑡 + 1)...𝑛) → 𝑚 ∈ ℝ)
524523adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℝ)
525520nngt0d 10941 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ ℕ → 0 < (𝑡 + 1))
526525adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 0 < (𝑡 + 1))
527 elfzle1 12215 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ((𝑡 + 1)...𝑛) → (𝑡 + 1) ≤ 𝑚)
528527adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → (𝑡 + 1) ≤ 𝑚)
529519, 522, 524, 526, 528ltletrd 10076 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 0 < 𝑚)
530518, 529, 401sylanbrc 695 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℕ)
531530adantlr 747 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑡 ∈ ℕ ∧ 𝑡𝑛) ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℕ)
532531adantlll 750 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℕ)
533172ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (𝑓𝑚) ∈ (ℂ × ℂ))
534 ffvelrn 6265 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( − :(ℂ × ℂ)⟶ℂ ∧ (𝑓𝑚) ∈ (ℂ × ℂ)) → ( − ‘(𝑓𝑚)) ∈ ℂ)
535139, 533, 534sylancr 694 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → ( − ‘(𝑓𝑚)) ∈ ℂ)
536535absge0d 14031 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → 0 ≤ (abs‘( − ‘(𝑓𝑚))))
537 fvco3 6185 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( − :(ℂ × ℂ)⟶ℂ ∧ (𝑓𝑚) ∈ (ℂ × ℂ)) → ((abs ∘ − )‘(𝑓𝑚)) = (abs‘( − ‘(𝑓𝑚))))
538139, 533, 537sylancr 694 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → ((abs ∘ − )‘(𝑓𝑚)) = (abs‘( − ‘(𝑓𝑚))))
539508, 538eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) = (abs‘( − ‘(𝑓𝑚))))
540536, 539breqtrrd 4611 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ 𝑓)‘𝑚))
541540ad5ant15 1295 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ 𝑓)‘𝑚))
542532, 541syldan 486 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 0 ≤ (((abs ∘ − ) ∘ 𝑓)‘𝑚))
543474, 515, 516, 542sermono 12695 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
544511, 543eqbrtrd 4605 . . . . . . . . . . . . . . . . . . 19 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
545405ad2antlr 759 . . . . . . . . . . . . . . . . . . 19 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝑛 ∈ ℝ)
546481adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝑡 ∈ ℝ)
547471, 544, 545, 546ltlecasei 10024 . . . . . . . . . . . . . . . . . 18 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
548547ralrimiva 2949 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ∀𝑡 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
549 breq1 4586 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) → (𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ↔ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
550549ralrn 6270 . . . . . . . . . . . . . . . . . . 19 (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) Fn ℕ → (∀𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ↔ ∀𝑡 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
551357, 550syl 17 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (∀𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ↔ ∀𝑡 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
552551adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (∀𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ↔ ∀𝑡 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
553548, 552mpbird 246 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ∀𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
554553r19.21bi 2916 . . . . . . . . . . . . . . 15 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))) → 𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
555364, 365, 554lensymd 10067 . . . . . . . . . . . . . 14 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))) → ¬ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) < 𝑚)
556313, 324, 360, 555supmax 8256 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))), ℝ*, < ) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
55752, 556sylan 487 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))), ℝ*, < ) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
558257, 311, 5573eqtr3rd 2653 . . . . . . . . . . 11 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) = (vol*‘( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩))))
559 elfznn 12241 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (1...𝑛) → 𝑧 ∈ ℕ)
560166, 65sseldi 3566 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ (ℝ × ℝ))
561 1st2nd2 7096 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑧) ∈ (ℝ × ℝ) → (𝑓𝑧) = ⟨(1st ‘(𝑓𝑧)), (2nd ‘(𝑓𝑧))⟩)
562561fveq2d 6107 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑧) ∈ (ℝ × ℝ) → ([,]‘(𝑓𝑧)) = ([,]‘⟨(1st ‘(𝑓𝑧)), (2nd ‘(𝑓𝑧))⟩))
563 df-ov 6552 . . . . . . . . . . . . . . . . . . 19 ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))) = ([,]‘⟨(1st ‘(𝑓𝑧)), (2nd ‘(𝑓𝑧))⟩)
564562, 563syl6eqr 2662 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑧) ∈ (ℝ × ℝ) → ([,]‘(𝑓𝑧)) = ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))))
565 xp1st 7089 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑧) ∈ (ℝ × ℝ) → (1st ‘(𝑓𝑧)) ∈ ℝ)
566 xp2nd 7090 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑧) ∈ (ℝ × ℝ) → (2nd ‘(𝑓𝑧)) ∈ ℝ)
567 iccssre 12126 . . . . . . . . . . . . . . . . . . 19 (((1st ‘(𝑓𝑧)) ∈ ℝ ∧ (2nd ‘(𝑓𝑧)) ∈ ℝ) → ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))) ⊆ ℝ)
568565, 566, 567syl2anc 691 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑧) ∈ (ℝ × ℝ) → ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))) ⊆ ℝ)
569564, 568eqsstrd 3602 . . . . . . . . . . . . . . . . 17 ((𝑓𝑧) ∈ (ℝ × ℝ) → ([,]‘(𝑓𝑧)) ⊆ ℝ)
570560, 569syl 17 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → ([,]‘(𝑓𝑧)) ⊆ ℝ)
57152, 559, 570syl2an 493 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ (1...𝑛)) → ([,]‘(𝑓𝑧)) ⊆ ℝ)
572571ralrimiva 2949 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ)
573 iunss 4497 . . . . . . . . . . . . . 14 ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ ↔ ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ)
574572, 573sylibr 223 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ)
575574adantr 480 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ)
576 uzid 11578 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ ℤ → (𝑛 + 1) ∈ (ℤ‘(𝑛 + 1)))
577 ne0i 3880 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ (ℤ‘(𝑛 + 1)) → (ℤ‘(𝑛 + 1)) ≠ ∅)
578 iunconst 4465 . . . . . . . . . . . . . . . 16 ((ℤ‘(𝑛 + 1)) ≠ ∅ → 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) = ([,]‘⟨0, 0⟩))
579376, 576, 577, 5784syl 19 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) = ([,]‘⟨0, 0⟩))
580 iccid 12091 . . . . . . . . . . . . . . . . 17 (0 ∈ ℝ* → (0[,]0) = {0})
581261, 580ax-mp 5 . . . . . . . . . . . . . . . 16 (0[,]0) = {0}
582 df-ov 6552 . . . . . . . . . . . . . . . 16 (0[,]0) = ([,]‘⟨0, 0⟩)
583581, 582eqtr3i 2634 . . . . . . . . . . . . . . 15 {0} = ([,]‘⟨0, 0⟩)
584579, 583syl6eqr 2662 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) = {0})
585 snssi 4280 . . . . . . . . . . . . . . 15 (0 ∈ ℝ → {0} ⊆ ℝ)
586201, 585ax-mp 5 . . . . . . . . . . . . . 14 {0} ⊆ ℝ
587584, 586syl6eqss 3618 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) ⊆ ℝ)
588587adantl 481 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) ⊆ ℝ)
589584fveq2d 6107 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (vol*‘ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)) = (vol*‘{0}))
590589adantl 481 . . . . . . . . . . . . 13 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)) = (vol*‘{0}))
591 ovolsn 23070 . . . . . . . . . . . . . 14 (0 ∈ ℝ → (vol*‘{0}) = 0)
592201, 591ax-mp 5 . . . . . . . . . . . . 13 (vol*‘{0}) = 0
593590, 592syl6eq 2660 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)) = 0)
594 ovolunnul 23075 . . . . . . . . . . . 12 (( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ ∧ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) ⊆ ℝ ∧ (vol*‘ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)) = 0) → (vol*‘( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩))) = (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
595575, 588, 593, 594syl3anc 1318 . . . . . . . . . . 11 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩))) = (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
596558, 595eqtrd 2644 . . . . . . . . . 10 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) = (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
597596breq2d 4595 . . . . . . . . 9 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ↔ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))))
598597biimpd 218 . . . . . . . 8 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) → 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))))
599598reximdva 3000 . . . . . . 7 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) → ∃𝑛 ∈ ℕ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))))
600599adantl 481 . . . . . 6 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) → ∃𝑛 ∈ ℕ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))))
601196, 600mpd 15 . . . . 5 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑛 ∈ ℕ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
602 fzfi 12633 . . . . . . . . . 10 (1...𝑛) ∈ Fin
603 icccld 22380 . . . . . . . . . . . . . . 15 (((1st ‘(𝑓𝑧)) ∈ ℝ ∧ (2nd ‘(𝑓𝑧)) ∈ ℝ) → ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))) ∈ (Clsd‘(topGen‘ran (,))))
604565, 566, 603syl2anc 691 . . . . . . . . . . . . . 14 ((𝑓𝑧) ∈ (ℝ × ℝ) → ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))) ∈ (Clsd‘(topGen‘ran (,))))
605564, 604eqeltrd 2688 . . . . . . . . . . . . 13 ((𝑓𝑧) ∈ (ℝ × ℝ) → ([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
606560, 605syl 17 . . . . . . . . . . . 12 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → ([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
607559, 606sylan2 490 . . . . . . . . . . 11 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ (1...𝑛)) → ([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
608607ralrimiva 2949 . . . . . . . . . 10 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
609 uniretop 22376 . . . . . . . . . . 11 ℝ = (topGen‘ran (,))
610609iuncld 20659 . . . . . . . . . 10 (((topGen‘ran (,)) ∈ Top ∧ (1...𝑛) ∈ Fin ∧ ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,)))) → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
6111, 602, 608, 610mp3an12i 1420 . . . . . . . . 9 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
612611adantr 480 . . . . . . . 8 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
613 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑓𝑧) → ([,]‘𝑏) = ([,]‘(𝑓𝑧)))
614613sseq1d 3595 . . . . . . . . . . . . . . 15 (𝑏 = (𝑓𝑧) → (([,]‘𝑏) ⊆ 𝐴 ↔ ([,]‘(𝑓𝑧)) ⊆ 𝐴))
615614elrab 3331 . . . . . . . . . . . . . 14 ((𝑓𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ↔ ((𝑓𝑧) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘(𝑓𝑧)) ⊆ 𝐴))
616615simprbi 479 . . . . . . . . . . . . 13 ((𝑓𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} → ([,]‘(𝑓𝑧)) ⊆ 𝐴)
61765, 73, 6163syl 18 . . . . . . . . . . . 12 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → ([,]‘(𝑓𝑧)) ⊆ 𝐴)
618559, 617sylan2 490 . . . . . . . . . . 11 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ (1...𝑛)) → ([,]‘(𝑓𝑧)) ⊆ 𝐴)
619618ralrimiva 2949 . . . . . . . . . 10 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴)
620 iunss 4497 . . . . . . . . . 10 ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴 ↔ ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴)
621619, 620sylibr 223 . . . . . . . . 9 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴)
622621adantr 480 . . . . . . . 8 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴)
623 simprr 792 . . . . . . . 8 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
624 sseq1 3589 . . . . . . . . . 10 (𝑠 = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) → (𝑠𝐴 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴))
625 fveq2 6103 . . . . . . . . . . 11 (𝑠 = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) → (vol*‘𝑠) = (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
626625breq2d 4595 . . . . . . . . . 10 (𝑠 = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) → (𝑀 < (vol*‘𝑠) ↔ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))))
627624, 626anbi12d 743 . . . . . . . . 9 (𝑠 = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) → ((𝑠𝐴𝑀 < (vol*‘𝑠)) ↔ ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))))
628627rspcev 3282 . . . . . . . 8 (( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))) ∧ ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
629612, 622, 623, 628syl12anc 1316 . . . . . . 7 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
63052, 629sylan 487 . . . . . 6 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
631630adantll 746 . . . . 5 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
632601, 631rexlimddv 3017 . . . 4 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
633632adantlr 747 . . 3 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
63417, 633exlimddv 1850 . 2 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 ≠ ∅) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
63515, 634pm2.61dane 2869 1 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3o 1030  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cun 3538  cin 3539  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108  {csn 4125  cop 4131   cuni 4372   ciun 4455  Disj wdisj 4553   class class class wbr 4583  cmpt 4643   Or wor 4958   × cxp 5036  ran crn 5039  cima 5041  ccom 5042   Fn wfn 5799  wf 5800  1-1wf1 5801  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  Fincfn 7841  supcsup 8229  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  *cxr 9952   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  (,)cioo 12046  [,]cicc 12049  ...cfz 12197  ..^cfzo 12334  seqcseq 12663  cexp 12722  abscabs 13822  topGenctg 15921  Topctop 20517  Clsdccld 20630  vol*covol 23038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-cmp 21000  df-con 21025  df-ovol 23040  df-vol 23041
This theorem is referenced by:  mblfinlem4  32619  ismblfin  32620
  Copyright terms: Public domain W3C validator