MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnnz Structured version   Visualization version   GIF version

Theorem elnnz 11264
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
elnnz (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))

Proof of Theorem elnnz
StepHypRef Expression
1 nnre 10904 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2 orc 399 . . . 4 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
3 nngt0 10926 . . . 4 (𝑁 ∈ ℕ → 0 < 𝑁)
41, 2, 3jca31 555 . . 3 (𝑁 ∈ ℕ → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁))
5 idd 24 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ))
6 lt0neg2 10414 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (0 < 𝑁 ↔ -𝑁 < 0))
7 renegcl 10223 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → -𝑁 ∈ ℝ)
8 0re 9919 . . . . . . . . . . . . 13 0 ∈ ℝ
9 ltnsym 10014 . . . . . . . . . . . . 13 ((-𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝑁 < 0 → ¬ 0 < -𝑁))
107, 8, 9sylancl 693 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (-𝑁 < 0 → ¬ 0 < -𝑁))
116, 10sylbid 229 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (0 < 𝑁 → ¬ 0 < -𝑁))
1211imp 444 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ 0 < -𝑁)
13 nngt0 10926 . . . . . . . . . 10 (-𝑁 ∈ ℕ → 0 < -𝑁)
1412, 13nsyl 134 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ -𝑁 ∈ ℕ)
15 gt0ne0 10372 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → 𝑁 ≠ 0)
1615neneqd 2787 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ 𝑁 = 0)
17 ioran 510 . . . . . . . . 9 (¬ (-𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (¬ -𝑁 ∈ ℕ ∧ ¬ 𝑁 = 0))
1814, 16, 17sylanbrc 695 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))
1918pm2.21d 117 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ((-𝑁 ∈ ℕ ∨ 𝑁 = 0) → 𝑁 ∈ ℕ))
205, 19jaod 394 . . . . . 6 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → 𝑁 ∈ ℕ))
2120ex 449 . . . . 5 (𝑁 ∈ ℝ → (0 < 𝑁 → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → 𝑁 ∈ ℕ)))
2221com23 84 . . . 4 (𝑁 ∈ ℝ → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (0 < 𝑁𝑁 ∈ ℕ)))
2322imp31 447 . . 3 (((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
244, 23impbii 198 . 2 (𝑁 ∈ ℕ ↔ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁))
25 elz 11256 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
26 3orrot 1037 . . . . . 6 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0))
27 3orass 1034 . . . . . 6 ((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
2826, 27bitri 263 . . . . 5 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
2928anbi2i 726 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))))
3025, 29bitri 263 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))))
3130anbi1i 727 . 2 ((𝑁 ∈ ℤ ∧ 0 < 𝑁) ↔ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁))
3224, 31bitr4i 266 1 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3o 1030   = wceq 1475  wcel 1977   class class class wbr 4583  cr 9814  0cc0 9815   < clt 9953  -cneg 10146  cn 10897  cz 11254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-z 11255
This theorem is referenced by:  elnn0z  11267  nnssz  11274  elnnz1  11280  znnsub  11300  nn0ge0div  11322  msqznn  11335  elfz1b  12279  lbfzo0  12375  elfzo0z  12377  fzofzim  12382  fzo1fzo0n0  12386  elfzodifsumelfzo  12401  elfznelfzo  12439  nnesq  12850  swrdlsw  13304  2swrd1eqwrdeq  13306  swrdccatin12lem3  13341  repswswrd  13382  cshwcsh2id  13425  swrd2lsw  13543  2swrd2eqwrdeq  13544  nnabscl  13913  iseralt  14263  sqr2irrlem  14816  nndivdvds  14827  oddge22np1  14911  evennn2n  14913  nno  14936  nnoddm1d2  14940  ndvdsadd  14972  bitsfzolem  14994  sqgcd  15116  qredeu  15210  prmind2  15236  qgt0numnn  15297  oddprm  15353  pythagtriplem6  15364  pythagtriplem11  15368  pythagtriplem13  15370  pythagtriplem19  15376  pc2dvds  15421  pcadd  15431  prmreclem3  15460  4sqlem11  15497  4sqlem12  15498  prmgaplem7  15599  cshwshashlem2  15641  subgmulg  17431  znidomb  19729  sgmnncl  24673  muinv  24719  mersenne  24752  bposlem6  24814  gausslemma2dlem1a  24890  lgseisenlem1  24900  lgsquadlem1  24905  lgsquadlem2  24906  2sqlem8  24951  dchrisum0flblem2  24998  clwlkisclwwlklem2a2  26308  clwlkisclwwlklem2a4  26312  clwlkisclwwlklem2a  26313  nn0prpwlem  31487  poimirlem7  32586  poimirlem29  32608  mblfinlem2  32617  irrapxlem4  36407  rmspecnonsq  36490  rmynn  36541  jm2.24  36548  jm2.23  36581  jm2.20nn  36582  jm2.27a  36590  jm2.27c  36592  rmydioph  36599  jm3.1lem3  36604  sumnnodd  38697  dvnxpaek  38832  dirkertrigeqlem3  38993  fourierdlem47  39046  fouriersw  39124  etransclem15  39142  etransclem24  39151  etransclem25  39152  etransclem35  39162  etransclem48  39175  iccpartigtl  39961  nnoALTV  40144  zm1nn  40348  clwlkclwwlklem2a2  41202  clwlkclwwlklem2a4  41206  clwlkclwwlklem2a  41207  eucrct2eupth1  41412  ztprmneprm  41918  blennngt2o2  42184
  Copyright terms: Public domain W3C validator