Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjor Structured version   Visualization version   GIF version

Theorem disjor 4567
 Description: Two ways to say that a collection 𝐵(𝑖) for 𝑖 ∈ 𝐴 is disjoint. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 14-Nov-2016.)
Hypothesis
Ref Expression
disjor.1 (𝑖 = 𝑗𝐵 = 𝐶)
Assertion
Ref Expression
disjor (Disj 𝑖𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅))
Distinct variable groups:   𝑖,𝑗,𝐴   𝐵,𝑗   𝐶,𝑖
Allowed substitution hints:   𝐵(𝑖)   𝐶(𝑗)

Proof of Theorem disjor
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-disj 4554 . 2 (Disj 𝑖𝐴 𝐵 ↔ ∀𝑥∃*𝑖𝐴 𝑥𝐵)
2 ralcom4 3197 . . 3 (∀𝑖𝐴𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) ↔ ∀𝑥𝑖𝐴𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
3 orcom 401 . . . . . . 7 ((𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ((𝐵𝐶) = ∅ ∨ 𝑖 = 𝑗))
4 df-or 384 . . . . . . 7 (((𝐵𝐶) = ∅ ∨ 𝑖 = 𝑗) ↔ (¬ (𝐵𝐶) = ∅ → 𝑖 = 𝑗))
5 neq0 3889 . . . . . . . . . 10 (¬ (𝐵𝐶) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝐵𝐶))
6 elin 3758 . . . . . . . . . . 11 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
76exbii 1764 . . . . . . . . . 10 (∃𝑥 𝑥 ∈ (𝐵𝐶) ↔ ∃𝑥(𝑥𝐵𝑥𝐶))
85, 7bitri 263 . . . . . . . . 9 (¬ (𝐵𝐶) = ∅ ↔ ∃𝑥(𝑥𝐵𝑥𝐶))
98imbi1i 338 . . . . . . . 8 ((¬ (𝐵𝐶) = ∅ → 𝑖 = 𝑗) ↔ (∃𝑥(𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
10 19.23v 1889 . . . . . . . 8 (∀𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) ↔ (∃𝑥(𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
119, 10bitr4i 266 . . . . . . 7 ((¬ (𝐵𝐶) = ∅ → 𝑖 = 𝑗) ↔ ∀𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
123, 4, 113bitri 285 . . . . . 6 ((𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ∀𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
1312ralbii 2963 . . . . 5 (∀𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ∀𝑗𝐴𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
14 ralcom4 3197 . . . . 5 (∀𝑗𝐴𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) ↔ ∀𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
1513, 14bitri 263 . . . 4 (∀𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ∀𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
1615ralbii 2963 . . 3 (∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ∀𝑖𝐴𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
17 disjor.1 . . . . . 6 (𝑖 = 𝑗𝐵 = 𝐶)
1817eleq2d 2673 . . . . 5 (𝑖 = 𝑗 → (𝑥𝐵𝑥𝐶))
1918rmo4 3366 . . . 4 (∃*𝑖𝐴 𝑥𝐵 ↔ ∀𝑖𝐴𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
2019albii 1737 . . 3 (∀𝑥∃*𝑖𝐴 𝑥𝐵 ↔ ∀𝑥𝑖𝐴𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
212, 16, 203bitr4i 291 . 2 (∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ∀𝑥∃*𝑖𝐴 𝑥𝐵)
221, 21bitr4i 266 1 (Disj 𝑖𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383  ∀wal 1473   = wceq 1475  ∃wex 1695   ∈ wcel 1977  ∀wral 2896  ∃*wrmo 2899   ∩ cin 3539  ∅c0 3874  Disj wdisj 4553 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rmo 2904  df-v 3175  df-dif 3543  df-in 3547  df-nul 3875  df-disj 4554 This theorem is referenced by:  disjors  4568  disjxiun  4579  disjxiunOLD  4580  disjxun  4581  otsndisj  4904  otiunsndisj  4905  qsdisj2  7712  s3sndisj  13554  s3iunsndisj  13555  cshwsdisj  15643  dyadmbl  23174  2spotdisj  26588  2spotiundisj  26589  2spotmdisj  26595  numclwwlkdisj  26607  disjnf  28766  disjorsf  28775  poimirlem26  32605  mblfinlem2  32617  ndisj2  38243  nnfoctbdjlem  39348  iundjiun  39353  otiunsndisjX  40317  2wspdisj  41165  2wspiundisj  41166  clwwlksndisj  41280  2wspmdisj  41501
 Copyright terms: Public domain W3C validator