Step | Hyp | Ref
| Expression |
1 | | nnnn0 11176 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
2 | 1 | anim2i 591 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑋 ∈ 𝑉 ∧ 𝑁 ∈
ℕ0)) |
3 | 2 | 3adant1 1072 |
. . . . 5
⊢ ((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑋 ∈ 𝑉 ∧ 𝑁 ∈
ℕ0)) |
4 | | numclwwlk.c |
. . . . . 6
⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ ((𝑉 ClWWalksN 𝐸)‘𝑛)) |
5 | | numclwwlk.f |
. . . . . 6
⊢ 𝐹 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝐶‘𝑛) ∣ (𝑤‘0) = 𝑣}) |
6 | | numclwwlk.g |
. . . . . 6
⊢ 𝐺 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2)
↦ {𝑤 ∈ (𝐶‘𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))}) |
7 | | numclwwlk.q |
. . . . . 6
⊢ 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)}) |
8 | 4, 5, 6, 7 | numclwwlkovq 26626 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋𝑄𝑁) = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)}) |
9 | 3, 8 | syl 17 |
. . . 4
⊢ ((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)}) |
10 | 9 | eleq2d 2673 |
. . 3
⊢ ((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) ↔ 𝑊 ∈ {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)})) |
11 | | fveq1 6102 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (𝑤‘0) = (𝑊‘0)) |
12 | 11 | eqeq1d 2612 |
. . . . 5
⊢ (𝑤 = 𝑊 → ((𝑤‘0) = 𝑋 ↔ (𝑊‘0) = 𝑋)) |
13 | | fveq2 6103 |
. . . . . 6
⊢ (𝑤 = 𝑊 → ( lastS ‘𝑤) = ( lastS ‘𝑊)) |
14 | 13 | neeq1d 2841 |
. . . . 5
⊢ (𝑤 = 𝑊 → (( lastS ‘𝑤) ≠ 𝑋 ↔ ( lastS ‘𝑊) ≠ 𝑋)) |
15 | 12, 14 | anbi12d 743 |
. . . 4
⊢ (𝑤 = 𝑊 → (((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋) ↔ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) |
16 | 15 | elrab 3331 |
. . 3
⊢ (𝑊 ∈ {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)} ↔ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) |
17 | 10, 16 | syl6bb 275 |
. 2
⊢ ((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) ↔ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)))) |
18 | | simpl1 1057 |
. . . . 5
⊢ (((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → 𝑉 FriendGrph 𝐸) |
19 | | wwlknimp 26215 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸)) |
20 | | peano2nn 10909 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈
ℕ) |
21 | 20 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 + 1) ∈ ℕ) |
22 | | simpl 472 |
. . . . . . . . . . . . . . 15
⊢ (((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1))) |
23 | 21, 22 | jca 553 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)))) |
24 | 23 | ex 449 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)) → (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1))))) |
25 | 24 | 3adant3 1074 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸) → (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1))))) |
26 | 19, 25 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) → (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1))))) |
27 | | lswlgt0cl 13209 |
. . . . . . . . . . 11
⊢ (((𝑁 + 1) ∈ ℕ ∧
(𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1))) → ( lastS ‘𝑊) ∈ 𝑉) |
28 | 26, 27 | syl6 34 |
. . . . . . . . . 10
⊢ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) → (𝑁 ∈ ℕ → ( lastS ‘𝑊) ∈ 𝑉)) |
29 | 28 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → (𝑁 ∈ ℕ → ( lastS ‘𝑊) ∈ 𝑉)) |
30 | 29 | com12 32 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → ((𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → ( lastS ‘𝑊) ∈ 𝑉)) |
31 | 30 | 3ad2ant3 1077 |
. . . . . . 7
⊢ ((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → ( lastS ‘𝑊) ∈ 𝑉)) |
32 | 31 | imp 444 |
. . . . . 6
⊢ (((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → ( lastS ‘𝑊) ∈ 𝑉) |
33 | | eleq1 2676 |
. . . . . . . . . . 11
⊢ ((𝑊‘0) = 𝑋 → ((𝑊‘0) ∈ 𝑉 ↔ 𝑋 ∈ 𝑉)) |
34 | 33 | biimprd 237 |
. . . . . . . . . 10
⊢ ((𝑊‘0) = 𝑋 → (𝑋 ∈ 𝑉 → (𝑊‘0) ∈ 𝑉)) |
35 | 34 | ad2antrl 760 |
. . . . . . . . 9
⊢ ((𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → (𝑋 ∈ 𝑉 → (𝑊‘0) ∈ 𝑉)) |
36 | 35 | com12 32 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑉 → ((𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → (𝑊‘0) ∈ 𝑉)) |
37 | 36 | 3ad2ant2 1076 |
. . . . . . 7
⊢ ((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → (𝑊‘0) ∈ 𝑉)) |
38 | 37 | imp 444 |
. . . . . 6
⊢ (((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → (𝑊‘0) ∈ 𝑉) |
39 | | neeq2 2845 |
. . . . . . . . . 10
⊢ (𝑋 = (𝑊‘0) → (( lastS ‘𝑊) ≠ 𝑋 ↔ ( lastS ‘𝑊) ≠ (𝑊‘0))) |
40 | 39 | eqcoms 2618 |
. . . . . . . . 9
⊢ ((𝑊‘0) = 𝑋 → (( lastS ‘𝑊) ≠ 𝑋 ↔ ( lastS ‘𝑊) ≠ (𝑊‘0))) |
41 | 40 | biimpa 500 |
. . . . . . . 8
⊢ (((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋) → ( lastS ‘𝑊) ≠ (𝑊‘0)) |
42 | 41 | adantl 481 |
. . . . . . 7
⊢ ((𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → ( lastS ‘𝑊) ≠ (𝑊‘0)) |
43 | 42 | adantl 481 |
. . . . . 6
⊢ (((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → ( lastS ‘𝑊) ≠ (𝑊‘0)) |
44 | 32, 38, 43 | 3jca 1235 |
. . . . 5
⊢ (((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → (( lastS ‘𝑊) ∈ 𝑉 ∧ (𝑊‘0) ∈ 𝑉 ∧ ( lastS ‘𝑊) ≠ (𝑊‘0))) |
45 | | frgraun 26523 |
. . . . 5
⊢ (𝑉 FriendGrph 𝐸 → ((( lastS ‘𝑊) ∈ 𝑉 ∧ (𝑊‘0) ∈ 𝑉 ∧ ( lastS ‘𝑊) ≠ (𝑊‘0)) → ∃!𝑣 ∈ 𝑉 ({( lastS ‘𝑊), 𝑣} ∈ ran 𝐸 ∧ {𝑣, (𝑊‘0)} ∈ ran 𝐸))) |
46 | 18, 44, 45 | sylc 63 |
. . . 4
⊢ (((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → ∃!𝑣 ∈ 𝑉 ({( lastS ‘𝑊), 𝑣} ∈ ran 𝐸 ∧ {𝑣, (𝑊‘0)} ∈ ran 𝐸)) |
47 | | simpl 472 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → 𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁)) |
48 | 47 | ad2antlr 759 |
. . . . . . . . . 10
⊢ ((((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) → 𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁)) |
49 | | simpr 476 |
. . . . . . . . . 10
⊢ ((((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) |
50 | 1 | 3ad2ant3 1077 |
. . . . . . . . . . 11
⊢ ((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℕ0) |
51 | 50 | ad2antrr 758 |
. . . . . . . . . 10
⊢ ((((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) → 𝑁 ∈
ℕ0) |
52 | 48, 49, 51 | 3jca 1235 |
. . . . . . . . 9
⊢ ((((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) → (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ 𝑣 ∈ 𝑉 ∧ 𝑁 ∈
ℕ0)) |
53 | | wwlkext2clwwlk 26331 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ 𝑣 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (({(
lastS ‘𝑊), 𝑣} ∈ ran 𝐸 ∧ {𝑣, (𝑊‘0)} ∈ ran 𝐸) → (𝑊 ++ 〈“𝑣”〉) ∈ ((𝑉 ClWWalksN 𝐸)‘(𝑁 + 2)))) |
54 | 53 | imp 444 |
. . . . . . . . 9
⊢ (((𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ 𝑣 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ ({( lastS
‘𝑊), 𝑣} ∈ ran 𝐸 ∧ {𝑣, (𝑊‘0)} ∈ ran 𝐸)) → (𝑊 ++ 〈“𝑣”〉) ∈ ((𝑉 ClWWalksN 𝐸)‘(𝑁 + 2))) |
55 | 52, 54 | sylan 487 |
. . . . . . . 8
⊢
(((((𝑉 FriendGrph
𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) ∧ ({( lastS ‘𝑊), 𝑣} ∈ ran 𝐸 ∧ {𝑣, (𝑊‘0)} ∈ ran 𝐸)) → (𝑊 ++ 〈“𝑣”〉) ∈ ((𝑉 ClWWalksN 𝐸)‘(𝑁 + 2))) |
56 | | 2nn0 11186 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℕ0 |
57 | 56 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 2 ∈
ℕ0) |
58 | 1, 57 | nn0addcld 11232 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (𝑁 + 2) ∈
ℕ0) |
59 | 4 | numclwwlkfvc 26604 |
. . . . . . . . . . 11
⊢ ((𝑁 + 2) ∈ ℕ0
→ (𝐶‘(𝑁 + 2)) = ((𝑉 ClWWalksN 𝐸)‘(𝑁 + 2))) |
60 | 58, 59 | syl 17 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (𝐶‘(𝑁 + 2)) = ((𝑉 ClWWalksN 𝐸)‘(𝑁 + 2))) |
61 | 60 | 3ad2ant3 1077 |
. . . . . . . . 9
⊢ ((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝐶‘(𝑁 + 2)) = ((𝑉 ClWWalksN 𝐸)‘(𝑁 + 2))) |
62 | 61 | ad3antrrr 762 |
. . . . . . . 8
⊢
(((((𝑉 FriendGrph
𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) ∧ ({( lastS ‘𝑊), 𝑣} ∈ ran 𝐸 ∧ {𝑣, (𝑊‘0)} ∈ ran 𝐸)) → (𝐶‘(𝑁 + 2)) = ((𝑉 ClWWalksN 𝐸)‘(𝑁 + 2))) |
63 | 55, 62 | eleqtrrd 2691 |
. . . . . . 7
⊢
(((((𝑉 FriendGrph
𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) ∧ ({( lastS ‘𝑊), 𝑣} ∈ ran 𝐸 ∧ {𝑣, (𝑊‘0)} ∈ ran 𝐸)) → (𝑊 ++ 〈“𝑣”〉) ∈ (𝐶‘(𝑁 + 2))) |
64 | | wwlknprop 26214 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉))) |
65 | 64 | simprrd 793 |
. . . . . . . . . 10
⊢ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) → 𝑊 ∈ Word 𝑉) |
66 | 65 | ad2antrl 760 |
. . . . . . . . 9
⊢ (((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → 𝑊 ∈ Word 𝑉) |
67 | 66 | ad2antrr 758 |
. . . . . . . 8
⊢
(((((𝑉 FriendGrph
𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) ∧ (𝑊 ++ 〈“𝑣”〉) ∈ (𝐶‘(𝑁 + 2))) → 𝑊 ∈ Word 𝑉) |
68 | 49 | adantr 480 |
. . . . . . . 8
⊢
(((((𝑉 FriendGrph
𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) ∧ (𝑊 ++ 〈“𝑣”〉) ∈ (𝐶‘(𝑁 + 2))) → 𝑣 ∈ 𝑉) |
69 | | 2z 11286 |
. . . . . . . . . . 11
⊢ 2 ∈
ℤ |
70 | | nn0pzuz 11621 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 2 ∈ ℤ) → (𝑁 + 2) ∈
(ℤ≥‘2)) |
71 | 1, 69, 70 | sylancl 693 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (𝑁 + 2) ∈
(ℤ≥‘2)) |
72 | 71 | 3ad2ant3 1077 |
. . . . . . . . 9
⊢ ((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑁 + 2) ∈
(ℤ≥‘2)) |
73 | 72 | ad3antrrr 762 |
. . . . . . . 8
⊢
(((((𝑉 FriendGrph
𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) ∧ (𝑊 ++ 〈“𝑣”〉) ∈ (𝐶‘(𝑁 + 2))) → (𝑁 + 2) ∈
(ℤ≥‘2)) |
74 | 59 | eleq2d 2673 |
. . . . . . . . . . . 12
⊢ ((𝑁 + 2) ∈ ℕ0
→ ((𝑊 ++
〈“𝑣”〉) ∈ (𝐶‘(𝑁 + 2)) ↔ (𝑊 ++ 〈“𝑣”〉) ∈ ((𝑉 ClWWalksN 𝐸)‘(𝑁 + 2)))) |
75 | 58, 74 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → ((𝑊 ++ 〈“𝑣”〉) ∈ (𝐶‘(𝑁 + 2)) ↔ (𝑊 ++ 〈“𝑣”〉) ∈ ((𝑉 ClWWalksN 𝐸)‘(𝑁 + 2)))) |
76 | 75 | 3ad2ant3 1077 |
. . . . . . . . . 10
⊢ ((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((𝑊 ++ 〈“𝑣”〉) ∈ (𝐶‘(𝑁 + 2)) ↔ (𝑊 ++ 〈“𝑣”〉) ∈ ((𝑉 ClWWalksN 𝐸)‘(𝑁 + 2)))) |
77 | 76 | ad2antrr 758 |
. . . . . . . . 9
⊢ ((((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) → ((𝑊 ++ 〈“𝑣”〉) ∈ (𝐶‘(𝑁 + 2)) ↔ (𝑊 ++ 〈“𝑣”〉) ∈ ((𝑉 ClWWalksN 𝐸)‘(𝑁 + 2)))) |
78 | 77 | biimpa 500 |
. . . . . . . 8
⊢
(((((𝑉 FriendGrph
𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) ∧ (𝑊 ++ 〈“𝑣”〉) ∈ (𝐶‘(𝑁 + 2))) → (𝑊 ++ 〈“𝑣”〉) ∈ ((𝑉 ClWWalksN 𝐸)‘(𝑁 + 2))) |
79 | | clwwlkext2edg 26330 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑣 ∈ 𝑉 ∧ (𝑁 + 2) ∈
(ℤ≥‘2)) ∧ (𝑊 ++ 〈“𝑣”〉) ∈ ((𝑉 ClWWalksN 𝐸)‘(𝑁 + 2))) → ({( lastS ‘𝑊), 𝑣} ∈ ran 𝐸 ∧ {𝑣, (𝑊‘0)} ∈ ran 𝐸)) |
80 | 67, 68, 73, 78, 79 | syl31anc 1321 |
. . . . . . 7
⊢
(((((𝑉 FriendGrph
𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) ∧ (𝑊 ++ 〈“𝑣”〉) ∈ (𝐶‘(𝑁 + 2))) → ({( lastS ‘𝑊), 𝑣} ∈ ran 𝐸 ∧ {𝑣, (𝑊‘0)} ∈ ran 𝐸)) |
81 | 63, 80 | impbida 873 |
. . . . . 6
⊢ ((((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) → (({( lastS ‘𝑊), 𝑣} ∈ ran 𝐸 ∧ {𝑣, (𝑊‘0)} ∈ ran 𝐸) ↔ (𝑊 ++ 〈“𝑣”〉) ∈ (𝐶‘(𝑁 + 2)))) |
82 | | df-3an 1033 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑣 ∈ 𝑉) ↔ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑣 ∈ 𝑉)) |
83 | 82 | simplbi2 653 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑣 ∈ 𝑉 → (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑣 ∈ 𝑉))) |
84 | 83 | 3adant1 1072 |
. . . . . . . . . . . 12
⊢ ((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑣 ∈ 𝑉 → (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑣 ∈ 𝑉))) |
85 | 84 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → (𝑣 ∈ 𝑉 → (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑣 ∈ 𝑉))) |
86 | 85 | imp 444 |
. . . . . . . . . 10
⊢ ((((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) → (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑣 ∈ 𝑉)) |
87 | | 3anass 1035 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ (𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋) ↔ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) |
88 | 87 | biimpri 217 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ (𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) |
89 | 88 | ad2antlr 759 |
. . . . . . . . . 10
⊢ ((((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) → (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ (𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) |
90 | 86, 89 | jca 553 |
. . . . . . . . 9
⊢ ((((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) → ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑣 ∈ 𝑉) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ (𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) |
91 | | clwwlkextfrlem1 26603 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑣 ∈ 𝑉) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ (𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → (((𝑊 ++ 〈“𝑣”〉)‘0) = 𝑋 ∧ ((𝑊 ++ 〈“𝑣”〉)‘𝑁) ≠ 𝑋)) |
92 | | simpl 472 |
. . . . . . . . . 10
⊢ ((((𝑊 ++ 〈“𝑣”〉)‘0) = 𝑋 ∧ ((𝑊 ++ 〈“𝑣”〉)‘𝑁) ≠ 𝑋) → ((𝑊 ++ 〈“𝑣”〉)‘0) = 𝑋) |
93 | | neeq2 2845 |
. . . . . . . . . . . 12
⊢ (𝑋 = ((𝑊 ++ 〈“𝑣”〉)‘0) → (((𝑊 ++ 〈“𝑣”〉)‘𝑁) ≠ 𝑋 ↔ ((𝑊 ++ 〈“𝑣”〉)‘𝑁) ≠ ((𝑊 ++ 〈“𝑣”〉)‘0))) |
94 | 93 | eqcoms 2618 |
. . . . . . . . . . 11
⊢ (((𝑊 ++ 〈“𝑣”〉)‘0) = 𝑋 → (((𝑊 ++ 〈“𝑣”〉)‘𝑁) ≠ 𝑋 ↔ ((𝑊 ++ 〈“𝑣”〉)‘𝑁) ≠ ((𝑊 ++ 〈“𝑣”〉)‘0))) |
95 | 94 | biimpa 500 |
. . . . . . . . . 10
⊢ ((((𝑊 ++ 〈“𝑣”〉)‘0) = 𝑋 ∧ ((𝑊 ++ 〈“𝑣”〉)‘𝑁) ≠ 𝑋) → ((𝑊 ++ 〈“𝑣”〉)‘𝑁) ≠ ((𝑊 ++ 〈“𝑣”〉)‘0)) |
96 | 92, 95 | jca 553 |
. . . . . . . . 9
⊢ ((((𝑊 ++ 〈“𝑣”〉)‘0) = 𝑋 ∧ ((𝑊 ++ 〈“𝑣”〉)‘𝑁) ≠ 𝑋) → (((𝑊 ++ 〈“𝑣”〉)‘0) = 𝑋 ∧ ((𝑊 ++ 〈“𝑣”〉)‘𝑁) ≠ ((𝑊 ++ 〈“𝑣”〉)‘0))) |
97 | 90, 91, 96 | 3syl 18 |
. . . . . . . 8
⊢ ((((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) → (((𝑊 ++ 〈“𝑣”〉)‘0) = 𝑋 ∧ ((𝑊 ++ 〈“𝑣”〉)‘𝑁) ≠ ((𝑊 ++ 〈“𝑣”〉)‘0))) |
98 | | nncn 10905 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
99 | | 2cnd 10970 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → 2 ∈
ℂ) |
100 | 98, 99 | pncand 10272 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → ((𝑁 + 2) − 2) = 𝑁) |
101 | 100 | 3ad2ant3 1077 |
. . . . . . . . . . . 12
⊢ ((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((𝑁 + 2) − 2) = 𝑁) |
102 | 101 | ad2antrr 758 |
. . . . . . . . . . 11
⊢ ((((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) → ((𝑁 + 2) − 2) = 𝑁) |
103 | 102 | fveq2d 6107 |
. . . . . . . . . 10
⊢ ((((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) → ((𝑊 ++ 〈“𝑣”〉)‘((𝑁 + 2) − 2)) = ((𝑊 ++ 〈“𝑣”〉)‘𝑁)) |
104 | 103 | neeq1d 2841 |
. . . . . . . . 9
⊢ ((((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) → (((𝑊 ++ 〈“𝑣”〉)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ 〈“𝑣”〉)‘0) ↔ ((𝑊 ++ 〈“𝑣”〉)‘𝑁) ≠ ((𝑊 ++ 〈“𝑣”〉)‘0))) |
105 | 104 | anbi2d 736 |
. . . . . . . 8
⊢ ((((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) → ((((𝑊 ++ 〈“𝑣”〉)‘0) = 𝑋 ∧ ((𝑊 ++ 〈“𝑣”〉)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ 〈“𝑣”〉)‘0)) ↔ (((𝑊 ++ 〈“𝑣”〉)‘0) = 𝑋 ∧ ((𝑊 ++ 〈“𝑣”〉)‘𝑁) ≠ ((𝑊 ++ 〈“𝑣”〉)‘0)))) |
106 | 97, 105 | mpbird 246 |
. . . . . . 7
⊢ ((((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) → (((𝑊 ++ 〈“𝑣”〉)‘0) = 𝑋 ∧ ((𝑊 ++ 〈“𝑣”〉)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ 〈“𝑣”〉)‘0))) |
107 | 106 | biantrud 527 |
. . . . . 6
⊢ ((((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) → ((𝑊 ++ 〈“𝑣”〉) ∈ (𝐶‘(𝑁 + 2)) ↔ ((𝑊 ++ 〈“𝑣”〉) ∈ (𝐶‘(𝑁 + 2)) ∧ (((𝑊 ++ 〈“𝑣”〉)‘0) = 𝑋 ∧ ((𝑊 ++ 〈“𝑣”〉)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ 〈“𝑣”〉)‘0))))) |
108 | | nn0addcl 11205 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ 2 ∈ ℕ0) → (𝑁 + 2) ∈
ℕ0) |
109 | 1, 56, 108 | sylancl 693 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → (𝑁 + 2) ∈
ℕ0) |
110 | 109 | anim2i 591 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑋 ∈ 𝑉 ∧ (𝑁 + 2) ∈
ℕ0)) |
111 | 110 | 3adant1 1072 |
. . . . . . . . . 10
⊢ ((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑋 ∈ 𝑉 ∧ (𝑁 + 2) ∈
ℕ0)) |
112 | 111 | ad2antrr 758 |
. . . . . . . . 9
⊢ ((((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) → (𝑋 ∈ 𝑉 ∧ (𝑁 + 2) ∈
ℕ0)) |
113 | | numclwwlk.h |
. . . . . . . . . 10
⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝐶‘𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))}) |
114 | 4, 5, 6, 7, 113 | numclwwlkovh 26628 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ (𝑁 + 2) ∈ ℕ0) →
(𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ (𝐶‘(𝑁 + 2)) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}) |
115 | 112, 114 | syl 17 |
. . . . . . . 8
⊢ ((((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ (𝐶‘(𝑁 + 2)) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}) |
116 | 115 | eleq2d 2673 |
. . . . . . 7
⊢ ((((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) → ((𝑊 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑊 ++ 〈“𝑣”〉) ∈ {𝑤 ∈ (𝐶‘(𝑁 + 2)) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})) |
117 | | fveq1 6102 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑊 ++ 〈“𝑣”〉) → (𝑤‘0) = ((𝑊 ++ 〈“𝑣”〉)‘0)) |
118 | 117 | eqeq1d 2612 |
. . . . . . . . 9
⊢ (𝑤 = (𝑊 ++ 〈“𝑣”〉) → ((𝑤‘0) = 𝑋 ↔ ((𝑊 ++ 〈“𝑣”〉)‘0) = 𝑋)) |
119 | | fveq1 6102 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑊 ++ 〈“𝑣”〉) → (𝑤‘((𝑁 + 2) − 2)) = ((𝑊 ++ 〈“𝑣”〉)‘((𝑁 + 2) − 2))) |
120 | 119, 117 | neeq12d 2843 |
. . . . . . . . 9
⊢ (𝑤 = (𝑊 ++ 〈“𝑣”〉) → ((𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0) ↔ ((𝑊 ++ 〈“𝑣”〉)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ 〈“𝑣”〉)‘0))) |
121 | 118, 120 | anbi12d 743 |
. . . . . . . 8
⊢ (𝑤 = (𝑊 ++ 〈“𝑣”〉) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0)) ↔ (((𝑊 ++ 〈“𝑣”〉)‘0) = 𝑋 ∧ ((𝑊 ++ 〈“𝑣”〉)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ 〈“𝑣”〉)‘0)))) |
122 | 121 | elrab 3331 |
. . . . . . 7
⊢ ((𝑊 ++ 〈“𝑣”〉) ∈ {𝑤 ∈ (𝐶‘(𝑁 + 2)) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))} ↔ ((𝑊 ++ 〈“𝑣”〉) ∈ (𝐶‘(𝑁 + 2)) ∧ (((𝑊 ++ 〈“𝑣”〉)‘0) = 𝑋 ∧ ((𝑊 ++ 〈“𝑣”〉)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ 〈“𝑣”〉)‘0)))) |
123 | 116, 122 | syl6rbb 276 |
. . . . . 6
⊢ ((((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) → (((𝑊 ++ 〈“𝑣”〉) ∈ (𝐶‘(𝑁 + 2)) ∧ (((𝑊 ++ 〈“𝑣”〉)‘0) = 𝑋 ∧ ((𝑊 ++ 〈“𝑣”〉)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ 〈“𝑣”〉)‘0))) ↔ (𝑊 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2)))) |
124 | 81, 107, 123 | 3bitrd 293 |
. . . . 5
⊢ ((((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣 ∈ 𝑉) → (({( lastS ‘𝑊), 𝑣} ∈ ran 𝐸 ∧ {𝑣, (𝑊‘0)} ∈ ran 𝐸) ↔ (𝑊 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2)))) |
125 | 124 | reubidva 3102 |
. . . 4
⊢ (((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → (∃!𝑣 ∈ 𝑉 ({( lastS ‘𝑊), 𝑣} ∈ ran 𝐸 ∧ {𝑣, (𝑊‘0)} ∈ ran 𝐸) ↔ ∃!𝑣 ∈ 𝑉 (𝑊 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2)))) |
126 | 46, 125 | mpbid 221 |
. . 3
⊢ (((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → ∃!𝑣 ∈ 𝑉 (𝑊 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2))) |
127 | 126 | ex 449 |
. 2
⊢ ((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → ∃!𝑣 ∈ 𝑉 (𝑊 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2)))) |
128 | 17, 127 | sylbid 229 |
1
⊢ ((𝑉 FriendGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) → ∃!𝑣 ∈ 𝑉 (𝑊 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2)))) |