MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlkovq Structured version   Visualization version   GIF version

Theorem numclwwlkovq 26626
Description: Value of operation Q, mapping a vertex v and a nonnegative integer n to the not closed walks v(0) ... v(n) of length n from a fixed vertex v = v(0). "Not closed" means v(n) =/= v(0). (Contributed by Alexander van der Vekens, 27-Sep-2018.)
Hypotheses
Ref Expression
numclwwlk.c 𝐶 = (𝑛 ∈ ℕ0 ↦ ((𝑉 ClWWalksN 𝐸)‘𝑛))
numclwwlk.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝐶𝑛) ∣ (𝑤‘0) = 𝑣})
numclwwlk.g 𝐺 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝐶𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
Assertion
Ref Expression
numclwwlkovq ((𝑋𝑉𝑁 ∈ ℕ0) → (𝑋𝑄𝑁) = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)})
Distinct variable groups:   𝑛,𝐸   𝑛,𝑁   𝑛,𝑉   𝑤,𝐶   𝑤,𝑁   𝐶,𝑛,𝑣,𝑤   𝑣,𝑁   𝑛,𝑋,𝑣,𝑤   𝑣,𝑉   𝑤,𝐸   𝑤,𝑉   𝑤,𝐹   𝑤,𝑄   𝑤,𝐺   𝑣,𝐸
Allowed substitution hints:   𝑄(𝑣,𝑛)   𝐹(𝑣,𝑛)   𝐺(𝑣,𝑛)

Proof of Theorem numclwwlkovq
StepHypRef Expression
1 fveq2 6103 . . . 4 (𝑛 = 𝑁 → ((𝑉 WWalksN 𝐸)‘𝑛) = ((𝑉 WWalksN 𝐸)‘𝑁))
21adantl 481 . . 3 ((𝑣 = 𝑋𝑛 = 𝑁) → ((𝑉 WWalksN 𝐸)‘𝑛) = ((𝑉 WWalksN 𝐸)‘𝑁))
3 eqeq2 2621 . . . . 5 (𝑣 = 𝑋 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑋))
43adantr 480 . . . 4 ((𝑣 = 𝑋𝑛 = 𝑁) → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑋))
5 simpl 472 . . . . 5 ((𝑣 = 𝑋𝑛 = 𝑁) → 𝑣 = 𝑋)
65neeq2d 2842 . . . 4 ((𝑣 = 𝑋𝑛 = 𝑁) → (( lastS ‘𝑤) ≠ 𝑣 ↔ ( lastS ‘𝑤) ≠ 𝑋))
74, 6anbi12d 743 . . 3 ((𝑣 = 𝑋𝑛 = 𝑁) → (((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣) ↔ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)))
82, 7rabeqbidv 3168 . 2 ((𝑣 = 𝑋𝑛 = 𝑁) → {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)} = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)})
9 numclwwlk.q . 2 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
10 fvex 6113 . . 3 ((𝑉 WWalksN 𝐸)‘𝑁) ∈ V
1110rabex 4740 . 2 {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)} ∈ V
128, 9, 11ovmpt2a 6689 1 ((𝑋𝑉𝑁 ∈ ℕ0) → (𝑋𝑄𝑁) = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  {crab 2900  cmpt 4643  cfv 5804  (class class class)co 6549  cmpt2 6551  0cc0 9815  cmin 10145  2c2 10947  0cn0 11169  cuz 11563   lastS clsw 13147   WWalksN cwwlkn 26206   ClWWalksN cclwwlkn 26277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554
This theorem is referenced by:  numclwwlkqhash  26627  numclwwlk2lem1  26629  numclwlk2lem2f  26630  numclwlk2lem2f1o  26632
  Copyright terms: Public domain W3C validator