Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > numclwwlkfvc | Structured version Visualization version GIF version |
Description: Value of function 𝐶, mapping a nonnegative number n to the closed walks having length n. (Contributed by Alexander van der Vekens, 14-Sep-2018.) |
Ref | Expression |
---|---|
numclwwlk.c | ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ ((𝑉 ClWWalksN 𝐸)‘𝑛)) |
Ref | Expression |
---|---|
numclwwlkfvc | ⊢ (𝑁 ∈ ℕ0 → (𝐶‘𝑁) = ((𝑉 ClWWalksN 𝐸)‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6103 | . 2 ⊢ (𝑛 = 𝑁 → ((𝑉 ClWWalksN 𝐸)‘𝑛) = ((𝑉 ClWWalksN 𝐸)‘𝑁)) | |
2 | numclwwlk.c | . 2 ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ ((𝑉 ClWWalksN 𝐸)‘𝑛)) | |
3 | fvex 6113 | . 2 ⊢ ((𝑉 ClWWalksN 𝐸)‘𝑁) ∈ V | |
4 | 1, 2, 3 | fvmpt 6191 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐶‘𝑁) = ((𝑉 ClWWalksN 𝐸)‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ↦ cmpt 4643 ‘cfv 5804 (class class class)co 6549 ℕ0cn0 11169 ClWWalksN cclwwlkn 26277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 |
This theorem is referenced by: extwwlkfablem2 26605 numclwwlkun 26606 numclwwlkffin 26609 numclwwlkovfel2 26610 numclwwlkovf2 26611 numclwwlkovf2ex 26613 numclwwlkovgel 26615 extwwlkfab 26617 numclwwlkqhash 26627 numclwwlk2lem1 26629 numclwlk2lem2f 26630 numclwlk2lem2f1o 26632 numclwwlk3lem 26635 numclwwlk4 26637 numclwwlk7 26641 |
Copyright terms: Public domain | W3C validator |