Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlkfvc Structured version   Visualization version   GIF version

Theorem numclwwlkfvc 26604
 Description: Value of function 𝐶, mapping a nonnegative number n to the closed walks having length n. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
Hypothesis
Ref Expression
numclwwlk.c 𝐶 = (𝑛 ∈ ℕ0 ↦ ((𝑉 ClWWalksN 𝐸)‘𝑛))
Assertion
Ref Expression
numclwwlkfvc (𝑁 ∈ ℕ0 → (𝐶𝑁) = ((𝑉 ClWWalksN 𝐸)‘𝑁))
Distinct variable groups:   𝑛,𝐸   𝑛,𝑁   𝑛,𝑉
Allowed substitution hint:   𝐶(𝑛)

Proof of Theorem numclwwlkfvc
StepHypRef Expression
1 fveq2 6103 . 2 (𝑛 = 𝑁 → ((𝑉 ClWWalksN 𝐸)‘𝑛) = ((𝑉 ClWWalksN 𝐸)‘𝑁))
2 numclwwlk.c . 2 𝐶 = (𝑛 ∈ ℕ0 ↦ ((𝑉 ClWWalksN 𝐸)‘𝑛))
3 fvex 6113 . 2 ((𝑉 ClWWalksN 𝐸)‘𝑁) ∈ V
41, 2, 3fvmpt 6191 1 (𝑁 ∈ ℕ0 → (𝐶𝑁) = ((𝑉 ClWWalksN 𝐸)‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  ℕ0cn0 11169   ClWWalksN cclwwlkn 26277 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812 This theorem is referenced by:  extwwlkfablem2  26605  numclwwlkun  26606  numclwwlkffin  26609  numclwwlkovfel2  26610  numclwwlkovf2  26611  numclwwlkovf2ex  26613  numclwwlkovgel  26615  extwwlkfab  26617  numclwwlkqhash  26627  numclwwlk2lem1  26629  numclwlk2lem2f  26630  numclwlk2lem2f1o  26632  numclwwlk3lem  26635  numclwwlk4  26637  numclwwlk7  26641
 Copyright terms: Public domain W3C validator