Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > numclwwlkovgel | Structured version Visualization version GIF version |
Description: Properties of an element of the value of operation 𝐺. (Contributed by Alexander van der Vekens, 24-Sep-2018.) |
Ref | Expression |
---|---|
numclwwlk.c | ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ ((𝑉 ClWWalksN 𝐸)‘𝑛)) |
numclwwlk.f | ⊢ 𝐹 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝐶‘𝑛) ∣ (𝑤‘0) = 𝑣}) |
numclwwlk.g | ⊢ 𝐺 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝐶‘𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))}) |
Ref | Expression |
---|---|
numclwwlkovgel | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑃 ∈ (𝑋𝐺𝑁) ↔ (𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numclwwlk.c | . . . . 5 ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ ((𝑉 ClWWalksN 𝐸)‘𝑛)) | |
2 | numclwwlk.f | . . . . 5 ⊢ 𝐹 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝐶‘𝑛) ∣ (𝑤‘0) = 𝑣}) | |
3 | numclwwlk.g | . . . . 5 ⊢ 𝐺 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝐶‘𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))}) | |
4 | 1, 2, 3 | numclwwlkovg 26614 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐺𝑁) = {𝑤 ∈ (𝐶‘𝑁) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))}) |
5 | 4 | eleq2d 2673 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑃 ∈ (𝑋𝐺𝑁) ↔ 𝑃 ∈ {𝑤 ∈ (𝐶‘𝑁) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})) |
6 | fveq1 6102 | . . . . . 6 ⊢ (𝑤 = 𝑃 → (𝑤‘0) = (𝑃‘0)) | |
7 | 6 | eqeq1d 2612 | . . . . 5 ⊢ (𝑤 = 𝑃 → ((𝑤‘0) = 𝑋 ↔ (𝑃‘0) = 𝑋)) |
8 | fveq1 6102 | . . . . . 6 ⊢ (𝑤 = 𝑃 → (𝑤‘(𝑁 − 2)) = (𝑃‘(𝑁 − 2))) | |
9 | 8, 6 | eqeq12d 2625 | . . . . 5 ⊢ (𝑤 = 𝑃 → ((𝑤‘(𝑁 − 2)) = (𝑤‘0) ↔ (𝑃‘(𝑁 − 2)) = (𝑃‘0))) |
10 | 7, 9 | anbi12d 743 | . . . 4 ⊢ (𝑤 = 𝑃 → (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) ↔ ((𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0)))) |
11 | 10 | elrab 3331 | . . 3 ⊢ (𝑃 ∈ {𝑤 ∈ (𝐶‘𝑁) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))} ↔ (𝑃 ∈ (𝐶‘𝑁) ∧ ((𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0)))) |
12 | 5, 11 | syl6bb 275 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑃 ∈ (𝑋𝐺𝑁) ↔ (𝑃 ∈ (𝐶‘𝑁) ∧ ((𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0))))) |
13 | eluzge2nn0 11603 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ0) | |
14 | 13 | adantl 481 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℕ0) |
15 | 1 | numclwwlkfvc 26604 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝐶‘𝑁) = ((𝑉 ClWWalksN 𝐸)‘𝑁)) |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝐶‘𝑁) = ((𝑉 ClWWalksN 𝐸)‘𝑁)) |
17 | 16 | eleq2d 2673 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑃 ∈ (𝐶‘𝑁) ↔ 𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁))) |
18 | 17 | anbi1d 737 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝑃 ∈ (𝐶‘𝑁) ∧ ((𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0))) ↔ (𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ∧ ((𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0))))) |
19 | 3anass 1035 | . . 3 ⊢ ((𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0)) ↔ (𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ∧ ((𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0)))) | |
20 | 18, 19 | syl6bbr 277 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝑃 ∈ (𝐶‘𝑁) ∧ ((𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0))) ↔ (𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0)))) |
21 | 12, 20 | bitrd 267 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑃 ∈ (𝑋𝐺𝑁) ↔ (𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 {crab 2900 ↦ cmpt 4643 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 0cc0 9815 − cmin 10145 2c2 10947 ℕ0cn0 11169 ℤ≥cuz 11563 ClWWalksN cclwwlkn 26277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-uz 11564 |
This theorem is referenced by: numclwwlkovgelim 26616 |
Copyright terms: Public domain | W3C validator |