Proof of Theorem numclwwlkovfel2
Step | Hyp | Ref
| Expression |
1 | | pm3.22 464 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑋 ∈ 𝑉) → (𝑋 ∈ 𝑉 ∧ 𝑁 ∈
ℕ0)) |
2 | 1 | 3adant1 1072 |
. . . 4
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝑋 ∈ 𝑉 ∧ 𝑁 ∈
ℕ0)) |
3 | | numclwwlk.c |
. . . . 5
⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ ((𝑉 ClWWalksN 𝐸)‘𝑛)) |
4 | | numclwwlk.f |
. . . . 5
⊢ 𝐹 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝐶‘𝑛) ∣ (𝑤‘0) = 𝑣}) |
5 | 3, 4 | numclwwlkovf 26608 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋𝐹𝑁) = {𝑤 ∈ (𝐶‘𝑁) ∣ (𝑤‘0) = 𝑋}) |
6 | 2, 5 | syl 17 |
. . 3
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝑋𝐹𝑁) = {𝑤 ∈ (𝐶‘𝑁) ∣ (𝑤‘0) = 𝑋}) |
7 | 6 | eleq2d 2673 |
. 2
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐴 ∈ (𝑋𝐹𝑁) ↔ 𝐴 ∈ {𝑤 ∈ (𝐶‘𝑁) ∣ (𝑤‘0) = 𝑋})) |
8 | 3 | numclwwlkfvc 26604 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (𝐶‘𝑁) = ((𝑉 ClWWalksN 𝐸)‘𝑁)) |
9 | 8 | 3ad2ant2 1076 |
. . . . . 6
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐶‘𝑁) = ((𝑉 ClWWalksN 𝐸)‘𝑁)) |
10 | 9 | eleq2d 2673 |
. . . . 5
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐴 ∈ (𝐶‘𝑁) ↔ 𝐴 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁))) |
11 | | usgrav 25867 |
. . . . . . . . 9
⊢ (𝑉 USGrph 𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) |
12 | 11 | anim1i 590 |
. . . . . . . 8
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ ℕ0) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈
ℕ0)) |
13 | | df-3an 1033 |
. . . . . . . 8
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0)
↔ ((𝑉 ∈ V ∧
𝐸 ∈ V) ∧ 𝑁 ∈
ℕ0)) |
14 | 12, 13 | sylibr 223 |
. . . . . . 7
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ ℕ0) → (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈
ℕ0)) |
15 | 14 | 3adant3 1074 |
. . . . . 6
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈
ℕ0)) |
16 | | isclwwlkn 26297 |
. . . . . 6
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0)
→ (𝐴 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ↔ (𝐴 ∈ (𝑉 ClWWalks 𝐸) ∧ (#‘𝐴) = 𝑁))) |
17 | 15, 16 | syl 17 |
. . . . 5
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐴 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ↔ (𝐴 ∈ (𝑉 ClWWalks 𝐸) ∧ (#‘𝐴) = 𝑁))) |
18 | | isclwwlk 26296 |
. . . . . . . 8
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝐴 ∈ (𝑉 ClWWalks 𝐸) ↔ (𝐴 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝐴), (𝐴‘0)} ∈ ran 𝐸))) |
19 | 11, 18 | syl 17 |
. . . . . . 7
⊢ (𝑉 USGrph 𝐸 → (𝐴 ∈ (𝑉 ClWWalks 𝐸) ↔ (𝐴 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝐴), (𝐴‘0)} ∈ ran 𝐸))) |
20 | 19 | 3ad2ant1 1075 |
. . . . . 6
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐴 ∈ (𝑉 ClWWalks 𝐸) ↔ (𝐴 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝐴), (𝐴‘0)} ∈ ran 𝐸))) |
21 | 20 | anbi1d 737 |
. . . . 5
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → ((𝐴 ∈ (𝑉 ClWWalks 𝐸) ∧ (#‘𝐴) = 𝑁) ↔ ((𝐴 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝐴), (𝐴‘0)} ∈ ran 𝐸) ∧ (#‘𝐴) = 𝑁))) |
22 | 10, 17, 21 | 3bitrd 293 |
. . . 4
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐴 ∈ (𝐶‘𝑁) ↔ ((𝐴 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝐴), (𝐴‘0)} ∈ ran 𝐸) ∧ (#‘𝐴) = 𝑁))) |
23 | 22 | anbi1d 737 |
. . 3
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → ((𝐴 ∈ (𝐶‘𝑁) ∧ (𝐴‘0) = 𝑋) ↔ (((𝐴 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝐴), (𝐴‘0)} ∈ ran 𝐸) ∧ (#‘𝐴) = 𝑁) ∧ (𝐴‘0) = 𝑋))) |
24 | | fveq1 6102 |
. . . . 5
⊢ (𝑤 = 𝐴 → (𝑤‘0) = (𝐴‘0)) |
25 | 24 | eqeq1d 2612 |
. . . 4
⊢ (𝑤 = 𝐴 → ((𝑤‘0) = 𝑋 ↔ (𝐴‘0) = 𝑋)) |
26 | 25 | elrab 3331 |
. . 3
⊢ (𝐴 ∈ {𝑤 ∈ (𝐶‘𝑁) ∣ (𝑤‘0) = 𝑋} ↔ (𝐴 ∈ (𝐶‘𝑁) ∧ (𝐴‘0) = 𝑋)) |
27 | | df-3an 1033 |
. . 3
⊢ (((𝐴 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝐴), (𝐴‘0)} ∈ ran 𝐸) ∧ (#‘𝐴) = 𝑁 ∧ (𝐴‘0) = 𝑋) ↔ (((𝐴 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝐴), (𝐴‘0)} ∈ ran 𝐸) ∧ (#‘𝐴) = 𝑁) ∧ (𝐴‘0) = 𝑋)) |
28 | 23, 26, 27 | 3bitr4g 302 |
. 2
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐴 ∈ {𝑤 ∈ (𝐶‘𝑁) ∣ (𝑤‘0) = 𝑋} ↔ ((𝐴 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝐴), (𝐴‘0)} ∈ ran 𝐸) ∧ (#‘𝐴) = 𝑁 ∧ (𝐴‘0) = 𝑋))) |
29 | 7, 28 | bitrd 267 |
1
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐴 ∈ (𝑋𝐹𝑁) ↔ ((𝐴 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝐴), (𝐴‘0)} ∈ ran 𝐸) ∧ (#‘𝐴) = 𝑁 ∧ (𝐴‘0) = 𝑋))) |