MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2gt0 Structured version   Visualization version   GIF version

Theorem itg2gt0 23333
Description: If the function 𝐹 is strictly positive on a set of positive measure, then the integral of the function is positive. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypotheses
Ref Expression
itg2gt0.1 (𝜑𝐴 ∈ dom vol)
itg2gt0.2 (𝜑 → 0 < (vol‘𝐴))
itg2gt0.3 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2gt0.4 (𝜑𝐹 ∈ MblFn)
itg2gt0.5 ((𝜑𝑥𝐴) → 0 < (𝐹𝑥))
Assertion
Ref Expression
itg2gt0 (𝜑 → 0 < (∫2𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥

Proof of Theorem itg2gt0
Dummy variables 𝑘 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2gt0.2 . 2 (𝜑 → 0 < (vol‘𝐴))
2 itg2gt0.1 . . . . . . 7 (𝜑𝐴 ∈ dom vol)
3 iccssxr 12127 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
4 volf 23104 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
54ffvelrni 6266 . . . . . . . 8 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
63, 5sseldi 3566 . . . . . . 7 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ ℝ*)
72, 6syl 17 . . . . . 6 (𝜑 → (vol‘𝐴) ∈ ℝ*)
87adantr 480 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol‘𝐴) ∈ ℝ*)
9 itg2gt0.3 . . . . . . . . . . . . . . . 16 (𝜑𝐹:ℝ⟶(0[,)+∞))
10 reex 9906 . . . . . . . . . . . . . . . 16 ℝ ∈ V
11 fex 6394 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,)+∞) ∧ ℝ ∈ V) → 𝐹 ∈ V)
129, 10, 11sylancl 693 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ V)
13 cnvexg 7005 . . . . . . . . . . . . . . 15 (𝐹 ∈ V → 𝐹 ∈ V)
1412, 13syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ V)
15 imaexg 6995 . . . . . . . . . . . . . 14 (𝐹 ∈ V → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ V)
1614, 15syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ V)
1716adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ V)
18 eqid 2610 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) = (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))
1917, 18fmptd 6292 . . . . . . . . . . 11 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶V)
20 ffn 5958 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶V → (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ)
2119, 20syl 17 . . . . . . . . . 10 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ)
22 fniunfv 6409 . . . . . . . . . 10 ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ → 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))
2321, 22syl 17 . . . . . . . . 9 (𝜑 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))
24 itg2gt0.4 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ MblFn)
25 rge0ssre 12151 . . . . . . . . . . . . . . . 16 (0[,)+∞) ⊆ ℝ
26 fss 5969 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
279, 25, 26sylancl 693 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℝ⟶ℝ)
28 mbfima 23205 . . . . . . . . . . . . . . 15 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ dom vol)
2924, 27, 28syl2anc 691 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ dom vol)
3029adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ dom vol)
3130, 18fmptd 6292 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶dom vol)
3231ffvelrnda 6267 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol)
3332ralrimiva 2949 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol)
34 iunmbl 23128 . . . . . . . . . 10 (∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol → 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol)
3533, 34syl 17 . . . . . . . . 9 (𝜑 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol)
3623, 35eqeltrrd 2689 . . . . . . . 8 (𝜑 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ∈ dom vol)
37 mblss 23106 . . . . . . . 8 ( ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ∈ dom vol → ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ)
3836, 37syl 17 . . . . . . 7 (𝜑 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ)
39 ovolcl 23053 . . . . . . 7 ( ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ∈ ℝ*)
4038, 39syl 17 . . . . . 6 (𝜑 → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ∈ ℝ*)
4140adantr 480 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ∈ ℝ*)
42 0xr 9965 . . . . . 6 0 ∈ ℝ*
4342a1i 11 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → 0 ∈ ℝ*)
44 mblvol 23105 . . . . . . . 8 (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴))
452, 44syl 17 . . . . . . 7 (𝜑 → (vol‘𝐴) = (vol*‘𝐴))
46 mblss 23106 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
472, 46syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
4847sselda 3568 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
499ffvelrnda 6267 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
50 elrege0 12149 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
5149, 50sylib 207 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
5251simpld 474 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
5348, 52syldan 486 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
54 itg2gt0.5 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 < (𝐹𝑥))
55 nnrecl 11167 . . . . . . . . . . . . 13 (((𝐹𝑥) ∈ ℝ ∧ 0 < (𝐹𝑥)) → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝐹𝑥))
5653, 54, 55syl2anc 691 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝐹𝑥))
57 ffn 5958 . . . . . . . . . . . . . . . . . 18 (𝐹:ℝ⟶(0[,)+∞) → 𝐹 Fn ℝ)
589, 57syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 Fn ℝ)
5958ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → 𝐹 Fn ℝ)
60 elpreima 6245 . . . . . . . . . . . . . . . 16 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))))
6159, 60syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))))
6248adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ)
6362biantrurd 528 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))))
64 nnrecre 10934 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
6564adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
6665rexrd 9968 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ*)
6766adantlr 747 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ*)
68 elioopnf 12138 . . . . . . . . . . . . . . . 16 ((1 / 𝑘) ∈ ℝ* → ((𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥))))
6967, 68syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥))))
7061, 63, 693bitr2d 295 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ ((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥))))
71 id 22 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
72 imaexg 6995 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ V → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V)
7314, 72syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V)
7473adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V)
75 oveq2 6557 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
7675oveq1d 6564 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((1 / 𝑛)(,)+∞) = ((1 / 𝑘)(,)+∞))
7776imaeq2d 5385 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝐹 “ ((1 / 𝑛)(,)+∞)) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
7877, 18fvmptg 6189 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
7971, 74, 78syl2anr 494 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
8079eleq2d 2673 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ↔ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))))
8153adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (𝐹𝑥) ∈ ℝ)
8281biantrurd 528 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) < (𝐹𝑥) ↔ ((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥))))
8370, 80, 823bitr4rd 300 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) < (𝐹𝑥) ↔ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8483rexbidva 3031 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (∃𝑘 ∈ ℕ (1 / 𝑘) < (𝐹𝑥) ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8556, 84mpbid 221 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘))
8685ex 449 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 → ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
87 eluni2 4376 . . . . . . . . . . 11 (𝑥 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ↔ ∃𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))𝑥𝑧)
88 eleq2 2677 . . . . . . . . . . . . 13 (𝑧 = ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) → (𝑥𝑧𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8988rexrn 6269 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ → (∃𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))𝑥𝑧 ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
9021, 89syl 17 . . . . . . . . . . 11 (𝜑 → (∃𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))𝑥𝑧 ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
9187, 90syl5bb 271 . . . . . . . . . 10 (𝜑 → (𝑥 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
9286, 91sylibrd 248 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝑥 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
9392ssrdv 3574 . . . . . . . 8 (𝜑𝐴 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))
94 ovolss 23060 . . . . . . . 8 ((𝐴 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ∧ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
9593, 38, 94syl2anc 691 . . . . . . 7 (𝜑 → (vol*‘𝐴) ≤ (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
9645, 95eqbrtrd 4605 . . . . . 6 (𝜑 → (vol‘𝐴) ≤ (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
9796adantr 480 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol‘𝐴) ≤ (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
98 mblvol 23105 . . . . . . . . 9 ( ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ∈ dom vol → (vol‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
9936, 98syl 17 . . . . . . . 8 (𝜑 → (vol‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
100 peano2nn 10909 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
101100adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
102 nnrecre 10934 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ → (1 / (𝑘 + 1)) ∈ ℝ)
103101, 102syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℝ)
104103rexrd 9968 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℝ*)
105 nnre 10904 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
106105adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
107106lep1d 10834 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ≤ (𝑘 + 1))
108 nngt0 10926 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 0 < 𝑘)
109108adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 0 < 𝑘)
110101nnred 10912 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ)
111101nngt0d 10941 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 0 < (𝑘 + 1))
112 lerec 10785 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℝ ∧ 0 < 𝑘) ∧ ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1))) → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)))
113106, 109, 110, 111, 112syl22anc 1319 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)))
114107, 113mpbid 221 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ≤ (1 / 𝑘))
115 iooss1 12081 . . . . . . . . . . . . 13 (((1 / (𝑘 + 1)) ∈ ℝ* ∧ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)) → ((1 / 𝑘)(,)+∞) ⊆ ((1 / (𝑘 + 1))(,)+∞))
116104, 114, 115syl2anc 691 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((1 / 𝑘)(,)+∞) ⊆ ((1 / (𝑘 + 1))(,)+∞))
117 imass2 5420 . . . . . . . . . . . 12 (((1 / 𝑘)(,)+∞) ⊆ ((1 / (𝑘 + 1))(,)+∞) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ⊆ (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
118116, 117syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ⊆ (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
11971, 73, 78syl2anr 494 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
120 imaexg 6995 . . . . . . . . . . . . 13 (𝐹 ∈ V → (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)) ∈ V)
12114, 120syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)) ∈ V)
122 oveq2 6557 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → (1 / 𝑛) = (1 / (𝑘 + 1)))
123122oveq1d 6564 . . . . . . . . . . . . . 14 (𝑛 = (𝑘 + 1) → ((1 / 𝑛)(,)+∞) = ((1 / (𝑘 + 1))(,)+∞))
124123imaeq2d 5385 . . . . . . . . . . . . 13 (𝑛 = (𝑘 + 1) → (𝐹 “ ((1 / 𝑛)(,)+∞)) = (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
125124, 18fvmptg 6189 . . . . . . . . . . . 12 (((𝑘 + 1) ∈ ℕ ∧ (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)) ∈ V) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)) = (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
126100, 121, 125syl2anr 494 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)) = (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
127118, 119, 1263sstr4d 3611 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ⊆ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)))
128127ralrimiva 2949 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ⊆ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)))
129 volsup 23131 . . . . . . . . 9 (((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶dom vol ∧ ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ⊆ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1))) → (vol‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ))
13031, 128, 129syl2anc 691 . . . . . . . 8 (𝜑 → (vol‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ))
13199, 130eqtr3d 2646 . . . . . . 7 (𝜑 → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ))
132131adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ))
13373adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V)
13471, 133, 78syl2anr 494 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 0 < (∫2𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
135134fveq2d 6107 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 0 < (∫2𝐹)) ∧ 𝑘 ∈ ℕ) → (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) = (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))
13642a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 ∈ ℝ*)
137 nnrecgt0 10935 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ ℕ → 0 < (1 / 𝑘))
138137adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → 0 < (1 / 𝑘))
139 0re 9919 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ ℝ
140 ltle 10005 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((0 ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ) → (0 < (1 / 𝑘) → 0 ≤ (1 / 𝑘)))
141139, 65, 140sylancr 694 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → (0 < (1 / 𝑘) → 0 ≤ (1 / 𝑘)))
142138, 141mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (1 / 𝑘))
143 elxrge0 12152 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 / 𝑘) ∈ (0[,]+∞) ↔ ((1 / 𝑘) ∈ ℝ* ∧ 0 ≤ (1 / 𝑘)))
14466, 142, 143sylanbrc 695 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ (0[,]+∞))
145 0e0iccpnf 12154 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ (0[,]+∞)
146 ifcl 4080 . . . . . . . . . . . . . . . . . . . . . 22 (((1 / 𝑘) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ (0[,]+∞))
147144, 145, 146sylancl 693 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ (0[,]+∞))
148147adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ (0[,]+∞))
149 eqid 2610 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))
150148, 149fmptd 6292 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞))
151150adantrr 749 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞))
152 itg2cl 23305 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ*)
153151, 152syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ*)
154 icossicc 12131 . . . . . . . . . . . . . . . . . . . 20 (0[,)+∞) ⊆ (0[,]+∞)
155 fss 5969 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
1569, 154, 155sylancl 693 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:ℝ⟶(0[,]+∞))
157 itg2cl 23305 . . . . . . . . . . . . . . . . . . 19 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) ∈ ℝ*)
158156, 157syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∫2𝐹) ∈ ℝ*)
159158adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (∫2𝐹) ∈ ℝ*)
160 0nrp 11741 . . . . . . . . . . . . . . . . . . 19 ¬ 0 ∈ ℝ+
161 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
162119, 32eqeltrrd 2689 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol)
163162adantrr 749 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol)
164163adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol)
165161, 139syl6eqelr 2697 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ)
16665, 138elrpd 11745 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+)
167166adantrr 749 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (1 / 𝑘) ∈ ℝ+)
168167adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (1 / 𝑘) ∈ ℝ+)
169 itg2const2 23314 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol ∧ (1 / 𝑘) ∈ ℝ+) → ((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ))
170164, 168, 169syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → ((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ))
171165, 170mpbird 246 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ)
172 elrege0 12149 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 / 𝑘) ∈ (0[,)+∞) ↔ ((1 / 𝑘) ∈ ℝ ∧ 0 ≤ (1 / 𝑘)))
17365, 142, 172sylanbrc 695 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ (0[,)+∞))
174173adantrr 749 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (1 / 𝑘) ∈ (0[,)+∞))
175174adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (1 / 𝑘) ∈ (0[,)+∞))
176 itg2const 23313 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol ∧ (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ ∧ (1 / 𝑘) ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) = ((1 / 𝑘) · (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
177164, 171, 175, 176syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) = ((1 / 𝑘) · (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
178161, 177eqtrd 2644 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 = ((1 / 𝑘) · (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
179 simplrr 797 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))
180171, 179elrpd 11745 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ+)
181168, 180rpmulcld 11764 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → ((1 / 𝑘) · (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))) ∈ ℝ+)
182178, 181eqeltrd 2688 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 ∈ ℝ+)
183182ex 449 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) → 0 ∈ ℝ+))
184160, 183mtoi 189 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → ¬ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
185 itg2ge0 23308 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
186151, 185syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
187 xrleloe 11853 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ* ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ*) → (0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ↔ (0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∨ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))))
18842, 153, 187sylancr 694 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ↔ (0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∨ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))))
189186, 188mpbid 221 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∨ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))))
190189ord 391 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (¬ 0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) → 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))))
191184, 190mt3d 139 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
192156adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 𝐹:ℝ⟶(0[,]+∞))
19365adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) ∈ ℝ)
19458adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑘 ∈ ℕ) → 𝐹 Fn ℝ)
195194, 60syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑘 ∈ ℕ) → (𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))))
196195biimpa 500 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞)))
197196simpld 474 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → 𝑥 ∈ ℝ)
19852adantlr 747 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
199197, 198syldan 486 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (𝐹𝑥) ∈ ℝ)
20066adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) ∈ ℝ*)
201196simprd 478 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))
202 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥)) → (1 / 𝑘) < (𝐹𝑥))
20368, 202syl6bi 242 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 / 𝑘) ∈ ℝ* → ((𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞) → (1 / 𝑘) < (𝐹𝑥)))
204200, 201, 203sylc 63 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) < (𝐹𝑥))
205193, 199, 204ltled 10064 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) ≤ (𝐹𝑥))
20651simprd 478 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
207206adantlr 747 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
208197, 207syldan 486 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → 0 ≤ (𝐹𝑥))
209 breq1 4586 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 / 𝑘) = if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) → ((1 / 𝑘) ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥)))
210 breq1 4586 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 = if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) → (0 ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥)))
211209, 210ifboth 4074 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1 / 𝑘) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
212205, 208, 211syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
213212adantlr 747 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
214 iffalse 4045 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) = 0)
215214adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) = 0)
216207adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → 0 ≤ (𝐹𝑥))
217215, 216eqbrtrd 4605 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
218213, 217pm2.61dan 828 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
219218ralrimiva 2949 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
220219adantrr 749 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
22110a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ℝ ∈ V)
222 ovex 6577 . . . . . . . . . . . . . . . . . . . . . . 23 (1 / 𝑘) ∈ V
223 c0ex 9913 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ V
224222, 223ifex 4106 . . . . . . . . . . . . . . . . . . . . . 22 if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ V
225224a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ V)
226 fvex 6113 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝑥) ∈ V
227226a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ V)
228 eqidd 2611 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))
2299feqmptd 6159 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
230221, 225, 227, 228, 229ofrfval2 6813 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘𝑟𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥)))
231230biimpar 501 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘𝑟𝐹)
232220, 231syldan 486 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘𝑟𝐹)
233 itg2le 23312 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘𝑟𝐹) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ≤ (∫2𝐹))
234151, 192, 232, 233syl3anc 1318 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ≤ (∫2𝐹))
235136, 153, 159, 191, 234xrltletrd 11868 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 < (∫2𝐹))
236235expr 641 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) → 0 < (∫2𝐹)))
237236con3d 147 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (¬ 0 < (∫2𝐹) → ¬ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
2384ffvelrni 6266 . . . . . . . . . . . . . . . . 17 ((𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ (0[,]+∞))
2393, 238sseldi 3566 . . . . . . . . . . . . . . . 16 ((𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ*)
240162, 239syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ*)
241 xrlenlt 9982 . . . . . . . . . . . . . . 15 (((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0 ↔ ¬ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
242240, 42, 241sylancl 693 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → ((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0 ↔ ¬ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
243237, 242sylibrd 248 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (¬ 0 < (∫2𝐹) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0))
244243imp 444 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ ¬ 0 < (∫2𝐹)) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0)
245244an32s 842 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 0 < (∫2𝐹)) ∧ 𝑘 ∈ ℕ) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0)
246135, 245eqbrtrd 4605 . . . . . . . . . 10 (((𝜑 ∧ ¬ 0 < (∫2𝐹)) ∧ 𝑘 ∈ ℕ) → (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0)
247246ralrimiva 2949 . . . . . . . . 9 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0)
248 fveq2 6103 . . . . . . . . . . . . 13 (𝑧 = ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) → (vol‘𝑧) = (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
249248breq1d 4593 . . . . . . . . . . . 12 (𝑧 = ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) → ((vol‘𝑧) ≤ 0 ↔ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0))
250249ralrn 6270 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0 ↔ ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0))
25119, 20, 2503syl 18 . . . . . . . . . 10 (𝜑 → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0 ↔ ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0))
252251adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0 ↔ ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0))
253247, 252mpbird 246 . . . . . . . 8 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0)
254 ffn 5958 . . . . . . . . . 10 (vol:dom vol⟶(0[,]+∞) → vol Fn dom vol)
2554, 254ax-mp 5 . . . . . . . . 9 vol Fn dom vol
256 frn 5966 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶dom vol → ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ dom vol)
25731, 256syl 17 . . . . . . . . . 10 (𝜑 → ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ dom vol)
258257adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ dom vol)
259 breq1 4586 . . . . . . . . . 10 (𝑥 = (vol‘𝑧) → (𝑥 ≤ 0 ↔ (vol‘𝑧) ≤ 0))
260259ralima 6402 . . . . . . . . 9 ((vol Fn dom vol ∧ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ dom vol) → (∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0))
261255, 258, 260sylancr 694 . . . . . . . 8 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0))
262253, 261mpbird 246 . . . . . . 7 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → ∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0)
263 imassrn 5396 . . . . . . . . 9 (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ⊆ ran vol
264 frn 5966 . . . . . . . . . . 11 (vol:dom vol⟶(0[,]+∞) → ran vol ⊆ (0[,]+∞))
2654, 264ax-mp 5 . . . . . . . . . 10 ran vol ⊆ (0[,]+∞)
266265, 3sstri 3577 . . . . . . . . 9 ran vol ⊆ ℝ*
267263, 266sstri 3577 . . . . . . . 8 (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ⊆ ℝ*
268 supxrleub 12028 . . . . . . . 8 (((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ⊆ ℝ* ∧ 0 ∈ ℝ*) → (sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ) ≤ 0 ↔ ∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0))
269267, 42, 268mp2an 704 . . . . . . 7 (sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ) ≤ 0 ↔ ∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0)
270262, 269sylibr 223 . . . . . 6 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ) ≤ 0)
271132, 270eqbrtrd 4605 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ≤ 0)
2728, 41, 43, 97, 271xrletrd 11869 . . . 4 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol‘𝐴) ≤ 0)
273272ex 449 . . 3 (𝜑 → (¬ 0 < (∫2𝐹) → (vol‘𝐴) ≤ 0))
274 xrlenlt 9982 . . . 4 (((vol‘𝐴) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol‘𝐴) ≤ 0 ↔ ¬ 0 < (vol‘𝐴)))
2757, 42, 274sylancl 693 . . 3 (𝜑 → ((vol‘𝐴) ≤ 0 ↔ ¬ 0 < (vol‘𝐴)))
276273, 275sylibd 228 . 2 (𝜑 → (¬ 0 < (∫2𝐹) → ¬ 0 < (vol‘𝐴)))
2771, 276mt4d 151 1 (𝜑 → 0 < (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  wss 3540  ifcif 4036   cuni 4372   ciun 4455   class class class wbr 4583  cmpt 4643  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑟 cofr 6794  supcsup 8229  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954   / cdiv 10563  cn 10897  +crp 11708  (,)cioo 12046  [,)cico 12048  [,]cicc 12049  vol*covol 23038  volcvol 23039  MblFncmbf 23189  2citg2 23191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-cncf 22489  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-0p 23243
This theorem is referenced by:  itggt0  23414
  Copyright terms: Public domain W3C validator