Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfaclim Structured version   Visualization version   GIF version

Theorem subfaclim 30424
Description: The subfactorial converges rapidly to 𝑁! / e. This is part of Metamath 100 proof #88. (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (#‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
Assertion
Ref Expression
subfaclim (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 𝑁))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝑁   𝐷,𝑛   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)

Proof of Theorem subfaclim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 11176 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 faccl 12932 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
31, 2syl 17 . . . . . 6 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
43nncnd 10913 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℂ)
5 ere 14658 . . . . . . 7 e ∈ ℝ
65recni 9931 . . . . . 6 e ∈ ℂ
7 epos 14774 . . . . . . 7 0 < e
85, 7gt0ne0ii 10443 . . . . . 6 e ≠ 0
9 divcl 10570 . . . . . 6 (((!‘𝑁) ∈ ℂ ∧ e ∈ ℂ ∧ e ≠ 0) → ((!‘𝑁) / e) ∈ ℂ)
106, 8, 9mp3an23 1408 . . . . 5 ((!‘𝑁) ∈ ℂ → ((!‘𝑁) / e) ∈ ℂ)
114, 10syl 17 . . . 4 (𝑁 ∈ ℕ → ((!‘𝑁) / e) ∈ ℂ)
12 derang.d . . . . . . . 8 𝐷 = (𝑥 ∈ Fin ↦ (#‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
13 subfac.n . . . . . . . 8 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
1412, 13subfacf 30411 . . . . . . 7 𝑆:ℕ0⟶ℕ0
1514ffvelrni 6266 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑆𝑁) ∈ ℕ0)
161, 15syl 17 . . . . 5 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℕ0)
1716nn0cnd 11230 . . . 4 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℂ)
1811, 17subcld 10271 . . 3 (𝑁 ∈ ℕ → (((!‘𝑁) / e) − (𝑆𝑁)) ∈ ℂ)
1918abscld 14023 . 2 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) ∈ ℝ)
20 peano2nn 10909 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
2120peano2nnd 10914 . . . 4 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℕ)
2221nnred 10912 . . 3 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℝ)
2320, 20nnmulcld 10945 . . 3 (𝑁 ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) ∈ ℕ)
2422, 23nndivred 10946 . 2 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) ∈ ℝ)
25 nnrecre 10934 . 2 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
26 eqid 2610 . . . . . 6 (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))
27 eqid 2610 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (((abs‘-1)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((abs‘-1)↑𝑛) / (!‘𝑛)))
28 eqid 2610 . . . . . 6 (𝑛 ∈ ℕ0 ↦ ((((abs‘-1)↑(𝑁 + 1)) / (!‘(𝑁 + 1))) · ((1 / ((𝑁 + 1) + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((((abs‘-1)↑(𝑁 + 1)) / (!‘(𝑁 + 1))) · ((1 / ((𝑁 + 1) + 1))↑𝑛)))
29 neg1cn 11001 . . . . . . 7 -1 ∈ ℂ
3029a1i 11 . . . . . 6 (𝑁 ∈ ℕ → -1 ∈ ℂ)
31 ax-1cn 9873 . . . . . . . . . 10 1 ∈ ℂ
3231absnegi 13987 . . . . . . . . 9 (abs‘-1) = (abs‘1)
33 abs1 13885 . . . . . . . . 9 (abs‘1) = 1
3432, 33eqtri 2632 . . . . . . . 8 (abs‘-1) = 1
35 1le1 10534 . . . . . . . 8 1 ≤ 1
3634, 35eqbrtri 4604 . . . . . . 7 (abs‘-1) ≤ 1
3736a1i 11 . . . . . 6 (𝑁 ∈ ℕ → (abs‘-1) ≤ 1)
3826, 27, 28, 20, 30, 37eftlub 14678 . . . . 5 (𝑁 ∈ ℕ → (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘)) ≤ (((abs‘-1)↑(𝑁 + 1)) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
3920nnnn0d 11228 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
40 eluznn0 11633 . . . . . . . . 9 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
4139, 40sylan 487 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
4226eftval 14646 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘) = ((-1↑𝑘) / (!‘𝑘)))
4341, 42syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘) = ((-1↑𝑘) / (!‘𝑘)))
4443sumeq2dv 14281 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘) = Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))
4544fveq2d 6107 . . . . 5 (𝑁 ∈ ℕ → (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))
4634oveq1i 6559 . . . . . . . 8 ((abs‘-1)↑(𝑁 + 1)) = (1↑(𝑁 + 1))
4720nnzd 11357 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℤ)
48 1exp 12751 . . . . . . . . 9 ((𝑁 + 1) ∈ ℤ → (1↑(𝑁 + 1)) = 1)
4947, 48syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (1↑(𝑁 + 1)) = 1)
5046, 49syl5eq 2656 . . . . . . 7 (𝑁 ∈ ℕ → ((abs‘-1)↑(𝑁 + 1)) = 1)
5150oveq1d 6564 . . . . . 6 (𝑁 ∈ ℕ → (((abs‘-1)↑(𝑁 + 1)) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))) = (1 · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
52 faccl 12932 . . . . . . . . . . 11 ((𝑁 + 1) ∈ ℕ0 → (!‘(𝑁 + 1)) ∈ ℕ)
5339, 52syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) ∈ ℕ)
5453, 20nnmulcld 10945 . . . . . . . . 9 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) · (𝑁 + 1)) ∈ ℕ)
5522, 54nndivred 10946 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ∈ ℝ)
5655recnd 9947 . . . . . . 7 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ∈ ℂ)
5756mulid2d 9937 . . . . . 6 (𝑁 ∈ ℕ → (1 · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))) = (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))
5851, 57eqtrd 2644 . . . . 5 (𝑁 ∈ ℕ → (((abs‘-1)↑(𝑁 + 1)) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))) = (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))
5938, 45, 583brtr3d 4614 . . . 4 (𝑁 ∈ ℕ → (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ≤ (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))
60 eqid 2610 . . . . . . 7 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
61 eftcl 14643 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
6229, 61mpan 702 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
6341, 62syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
6426eftlcvg 14675 . . . . . . . 8 ((-1 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ0) → seq(𝑁 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
6529, 39, 64sylancr 694 . . . . . . 7 (𝑁 ∈ ℕ → seq(𝑁 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
6660, 47, 43, 63, 65isumcl 14334 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
6766abscld 14023 . . . . 5 (𝑁 ∈ ℕ → (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ∈ ℝ)
683nnred 10912 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℝ)
693nngt0d 10941 . . . . 5 (𝑁 ∈ ℕ → 0 < (!‘𝑁))
70 lemul2 10755 . . . . 5 (((abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ∈ ℝ ∧ (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ∈ ℝ ∧ ((!‘𝑁) ∈ ℝ ∧ 0 < (!‘𝑁))) → ((abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ≤ (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ↔ ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) ≤ ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))))
7167, 55, 68, 69, 70syl112anc 1322 . . . 4 (𝑁 ∈ ℕ → ((abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ≤ (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ↔ ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) ≤ ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))))
7259, 71mpbid 221 . . 3 (𝑁 ∈ ℕ → ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) ≤ ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
7312, 13subfacval2 30423 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑆𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘))))
741, 73syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑆𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘))))
75 nncn 10905 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
76 pncan 10166 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
7775, 31, 76sylancl 693 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
7877oveq2d 6565 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0...((𝑁 + 1) − 1)) = (0...𝑁))
7978sumeq1d 14279 . . . . . . . . . 10 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘)))
8079oveq2d 6565 . . . . . . . . 9 (𝑁 ∈ ℕ → ((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘))))
8174, 80eqtr4d 2647 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑆𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))))
8281oveq1d 6564 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑆𝑁) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = (((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
83 divrec 10580 . . . . . . . . . 10 (((!‘𝑁) ∈ ℂ ∧ e ∈ ℂ ∧ e ≠ 0) → ((!‘𝑁) / e) = ((!‘𝑁) · (1 / e)))
846, 8, 83mp3an23 1408 . . . . . . . . 9 ((!‘𝑁) ∈ ℂ → ((!‘𝑁) / e) = ((!‘𝑁) · (1 / e)))
854, 84syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → ((!‘𝑁) / e) = ((!‘𝑁) · (1 / e)))
86 df-e 14638 . . . . . . . . . . . 12 e = (exp‘1)
8786oveq2i 6560 . . . . . . . . . . 11 (1 / e) = (1 / (exp‘1))
88 efneg 14667 . . . . . . . . . . . 12 (1 ∈ ℂ → (exp‘-1) = (1 / (exp‘1)))
8931, 88ax-mp 5 . . . . . . . . . . 11 (exp‘-1) = (1 / (exp‘1))
90 efval 14649 . . . . . . . . . . . 12 (-1 ∈ ℂ → (exp‘-1) = Σ𝑘 ∈ ℕ0 ((-1↑𝑘) / (!‘𝑘)))
9129, 90ax-mp 5 . . . . . . . . . . 11 (exp‘-1) = Σ𝑘 ∈ ℕ0 ((-1↑𝑘) / (!‘𝑘))
9287, 89, 913eqtr2i 2638 . . . . . . . . . 10 (1 / e) = Σ𝑘 ∈ ℕ0 ((-1↑𝑘) / (!‘𝑘))
93 nn0uz 11598 . . . . . . . . . . 11 0 = (ℤ‘0)
9442adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘) = ((-1↑𝑘) / (!‘𝑘)))
9562adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
96 0nn0 11184 . . . . . . . . . . . . 13 0 ∈ ℕ0
9726eftlcvg 14675 . . . . . . . . . . . . 13 ((-1 ∈ ℂ ∧ 0 ∈ ℕ0) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
9829, 96, 97mp2an 704 . . . . . . . . . . . 12 seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝
9998a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
10093, 60, 39, 94, 95, 99isumsplit 14411 . . . . . . . . . 10 (𝑁 ∈ ℕ → Σ𝑘 ∈ ℕ0 ((-1↑𝑘) / (!‘𝑘)) = (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))
10192, 100syl5eq 2656 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 / e) = (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))
102101oveq2d 6565 . . . . . . . 8 (𝑁 ∈ ℕ → ((!‘𝑁) · (1 / e)) = ((!‘𝑁) · (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
103 fzfid 12634 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0...((𝑁 + 1) − 1)) ∈ Fin)
104 elfznn0 12302 . . . . . . . . . . . 12 (𝑘 ∈ (0...((𝑁 + 1) − 1)) → 𝑘 ∈ ℕ0)
105104adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((𝑁 + 1) − 1))) → 𝑘 ∈ ℕ0)
10629, 105, 61sylancr 694 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((𝑁 + 1) − 1))) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
107103, 106fsumcl 14311 . . . . . . . . 9 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
1084, 107, 66adddid 9943 . . . . . . . 8 (𝑁 ∈ ℕ → ((!‘𝑁) · (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = (((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
10985, 102, 1083eqtrd 2648 . . . . . . 7 (𝑁 ∈ ℕ → ((!‘𝑁) / e) = (((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
11082, 109eqtr4d 2647 . . . . . 6 (𝑁 ∈ ℕ → ((𝑆𝑁) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) / e))
1114, 66mulcld 9939 . . . . . . 7 (𝑁 ∈ ℕ → ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ∈ ℂ)
11211, 17, 111subaddd 10289 . . . . . 6 (𝑁 ∈ ℕ → ((((!‘𝑁) / e) − (𝑆𝑁)) = ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ↔ ((𝑆𝑁) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) / e)))
113110, 112mpbird 246 . . . . 5 (𝑁 ∈ ℕ → (((!‘𝑁) / e) − (𝑆𝑁)) = ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))
114113fveq2d 6107 . . . 4 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) = (abs‘((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
1154, 66absmuld 14041 . . . 4 (𝑁 ∈ ℕ → (abs‘((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = ((abs‘(!‘𝑁)) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
1163nnnn0d 11228 . . . . . . 7 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ0)
117116nn0ge0d 11231 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ (!‘𝑁))
11868, 117absidd 14009 . . . . 5 (𝑁 ∈ ℕ → (abs‘(!‘𝑁)) = (!‘𝑁))
119118oveq1d 6564 . . . 4 (𝑁 ∈ ℕ → ((abs‘(!‘𝑁)) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
120114, 115, 1193eqtrd 2648 . . 3 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) = ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
121 facp1 12927 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
1221, 121syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
123122oveq1d 6564 . . . . . 6 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) · (𝑁 + 1)) = (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 1)))
12420nncnd 10913 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
1254, 124, 124mulassd 9942 . . . . . 6 (𝑁 ∈ ℕ → (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 1)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 1))))
126123, 125eqtr2d 2645 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 1))) = ((!‘(𝑁 + 1)) · (𝑁 + 1)))
127126oveq2d 6565 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) · ((𝑁 + 1) + 1)) / ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 1)))) = (((!‘𝑁) · ((𝑁 + 1) + 1)) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))
12821nncnd 10913 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℂ)
12923nncnd 10913 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) ∈ ℂ)
13023nnne0d 10942 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) ≠ 0)
1313nnne0d 10942 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) ≠ 0)
132128, 129, 4, 130, 131divcan5d 10706 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) · ((𝑁 + 1) + 1)) / ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 1)))) = (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))))
13354nncnd 10913 . . . . 5 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) · (𝑁 + 1)) ∈ ℂ)
13454nnne0d 10942 . . . . 5 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) · (𝑁 + 1)) ≠ 0)
1354, 128, 133, 134divassd 10715 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) · ((𝑁 + 1) + 1)) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) = ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
136127, 132, 1353eqtr3d 2652 . . 3 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) = ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
13772, 120, 1363brtr4d 4615 . 2 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) ≤ (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))))
138 nnmulcl 10920 . . . . . . 7 ((((𝑁 + 1) + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑁 + 1) + 1) · 𝑁) ∈ ℕ)
13921, 138mpancom 700 . . . . . 6 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) ∈ ℕ)
140139nnred 10912 . . . . 5 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) ∈ ℝ)
141140ltp1d 10833 . . . 4 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) < ((((𝑁 + 1) + 1) · 𝑁) + 1))
142129mulid2d 9937 . . . . 5 (𝑁 ∈ ℕ → (1 · ((𝑁 + 1) · (𝑁 + 1))) = ((𝑁 + 1) · (𝑁 + 1)))
14331a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℂ)
14475, 143, 124adddird 9944 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) = ((𝑁 · (𝑁 + 1)) + (1 · (𝑁 + 1))))
14575, 124mulcomd 9940 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 · (𝑁 + 1)) = ((𝑁 + 1) · 𝑁))
146124mulid2d 9937 . . . . . . 7 (𝑁 ∈ ℕ → (1 · (𝑁 + 1)) = (𝑁 + 1))
147145, 146oveq12d 6567 . . . . . 6 (𝑁 ∈ ℕ → ((𝑁 · (𝑁 + 1)) + (1 · (𝑁 + 1))) = (((𝑁 + 1) · 𝑁) + (𝑁 + 1)))
148124, 143, 75adddird 9944 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) = (((𝑁 + 1) · 𝑁) + (1 · 𝑁)))
149148oveq1d 6564 . . . . . . 7 (𝑁 ∈ ℕ → ((((𝑁 + 1) + 1) · 𝑁) + 1) = ((((𝑁 + 1) · 𝑁) + (1 · 𝑁)) + 1))
15075mulid2d 9937 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 · 𝑁) = 𝑁)
151150oveq2d 6565 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑁 + 1) · 𝑁) + (1 · 𝑁)) = (((𝑁 + 1) · 𝑁) + 𝑁))
152151oveq1d 6564 . . . . . . 7 (𝑁 ∈ ℕ → ((((𝑁 + 1) · 𝑁) + (1 · 𝑁)) + 1) = ((((𝑁 + 1) · 𝑁) + 𝑁) + 1))
153124, 75mulcld 9939 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) · 𝑁) ∈ ℂ)
154153, 75, 143addassd 9941 . . . . . . 7 (𝑁 ∈ ℕ → ((((𝑁 + 1) · 𝑁) + 𝑁) + 1) = (((𝑁 + 1) · 𝑁) + (𝑁 + 1)))
155149, 152, 1543eqtrd 2648 . . . . . 6 (𝑁 ∈ ℕ → ((((𝑁 + 1) + 1) · 𝑁) + 1) = (((𝑁 + 1) · 𝑁) + (𝑁 + 1)))
156147, 155eqtr4d 2647 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 · (𝑁 + 1)) + (1 · (𝑁 + 1))) = ((((𝑁 + 1) + 1) · 𝑁) + 1))
157142, 144, 1563eqtrd 2648 . . . 4 (𝑁 ∈ ℕ → (1 · ((𝑁 + 1) · (𝑁 + 1))) = ((((𝑁 + 1) + 1) · 𝑁) + 1))
158141, 157breqtrrd 4611 . . 3 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) < (1 · ((𝑁 + 1) · (𝑁 + 1))))
159 nnre 10904 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
160 nngt0 10926 . . . . 5 (𝑁 ∈ ℕ → 0 < 𝑁)
161159, 160jca 553 . . . 4 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
162 1red 9934 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℝ)
163 nnre 10904 . . . . . 6 (((𝑁 + 1) · (𝑁 + 1)) ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) ∈ ℝ)
164 nngt0 10926 . . . . . 6 (((𝑁 + 1) · (𝑁 + 1)) ∈ ℕ → 0 < ((𝑁 + 1) · (𝑁 + 1)))
165163, 164jca 553 . . . . 5 (((𝑁 + 1) · (𝑁 + 1)) ∈ ℕ → (((𝑁 + 1) · (𝑁 + 1)) ∈ ℝ ∧ 0 < ((𝑁 + 1) · (𝑁 + 1))))
16623, 165syl 17 . . . 4 (𝑁 ∈ ℕ → (((𝑁 + 1) · (𝑁 + 1)) ∈ ℝ ∧ 0 < ((𝑁 + 1) · (𝑁 + 1))))
167 lt2mul2div 10780 . . . 4 (((((𝑁 + 1) + 1) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) ∧ (1 ∈ ℝ ∧ (((𝑁 + 1) · (𝑁 + 1)) ∈ ℝ ∧ 0 < ((𝑁 + 1) · (𝑁 + 1))))) → ((((𝑁 + 1) + 1) · 𝑁) < (1 · ((𝑁 + 1) · (𝑁 + 1))) ↔ (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) < (1 / 𝑁)))
16822, 161, 162, 166, 167syl22anc 1319 . . 3 (𝑁 ∈ ℕ → ((((𝑁 + 1) + 1) · 𝑁) < (1 · ((𝑁 + 1) · (𝑁 + 1))) ↔ (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) < (1 / 𝑁)))
169158, 168mpbid 221 . 2 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) < (1 / 𝑁))
17019, 24, 25, 137, 169lelttrd 10074 1 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {cab 2596  wne 2780  wral 2896   class class class wbr 4583  cmpt 4643  dom cdm 5038  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  seqcseq 12663  cexp 12722  !cfa 12922  #chash 12979  abscabs 13822  cli 14063  Σcsu 14264  expce 14631  eceu 14632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-e 14638
This theorem is referenced by:  subfacval3  30425
  Copyright terms: Public domain W3C validator