MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volsup Structured version   Visualization version   GIF version

Theorem volsup 23131
Description: The volume of the limit of an increasing sequence of measurable sets is the limit of the volumes. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
volsup ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < ))
Distinct variable group:   𝑛,𝐹

Proof of Theorem volsup
Dummy variables 𝑗 𝑘 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffvelrn 6265 . . . . . . . . . . 11 ((𝐹:ℕ⟶dom vol ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ dom vol)
21ad2ant2r 779 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ∈ dom vol)
3 fzofi 12635 . . . . . . . . . . 11 (1..^𝑘) ∈ Fin
4 simpll 786 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → 𝐹:ℕ⟶dom vol)
5 elfzouz 12343 . . . . . . . . . . . . . 14 (𝑚 ∈ (1..^𝑘) → 𝑚 ∈ (ℤ‘1))
6 nnuz 11599 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
75, 6syl6eleqr 2699 . . . . . . . . . . . . 13 (𝑚 ∈ (1..^𝑘) → 𝑚 ∈ ℕ)
8 ffvelrn 6265 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶dom vol ∧ 𝑚 ∈ ℕ) → (𝐹𝑚) ∈ dom vol)
94, 7, 8syl2an 493 . . . . . . . . . . . 12 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) ∧ 𝑚 ∈ (1..^𝑘)) → (𝐹𝑚) ∈ dom vol)
109ralrimiva 2949 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → ∀𝑚 ∈ (1..^𝑘)(𝐹𝑚) ∈ dom vol)
11 finiunmbl 23119 . . . . . . . . . . 11 (((1..^𝑘) ∈ Fin ∧ ∀𝑚 ∈ (1..^𝑘)(𝐹𝑚) ∈ dom vol) → 𝑚 ∈ (1..^𝑘)(𝐹𝑚) ∈ dom vol)
123, 10, 11sylancr 694 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → 𝑚 ∈ (1..^𝑘)(𝐹𝑚) ∈ dom vol)
13 difmbl 23118 . . . . . . . . . 10 (((𝐹𝑘) ∈ dom vol ∧ 𝑚 ∈ (1..^𝑘)(𝐹𝑚) ∈ dom vol) → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol)
142, 12, 13syl2anc 691 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol)
15 mblvol 23105 . . . . . . . . . . 11 (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol → (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = (vol*‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))
1614, 15syl 17 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = (vol*‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))
17 difssd 3700 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ⊆ (𝐹𝑘))
18 mblss 23106 . . . . . . . . . . . 12 ((𝐹𝑘) ∈ dom vol → (𝐹𝑘) ⊆ ℝ)
192, 18syl 17 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ⊆ ℝ)
20 mblvol 23105 . . . . . . . . . . . . 13 ((𝐹𝑘) ∈ dom vol → (vol‘(𝐹𝑘)) = (vol*‘(𝐹𝑘)))
212, 20syl 17 . . . . . . . . . . . 12 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘(𝐹𝑘)) = (vol*‘(𝐹𝑘)))
22 simprr 792 . . . . . . . . . . . 12 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘(𝐹𝑘)) ∈ ℝ)
2321, 22eqeltrrd 2689 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘(𝐹𝑘)) ∈ ℝ)
24 ovolsscl 23061 . . . . . . . . . . 11 ((((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ⊆ (𝐹𝑘) ∧ (𝐹𝑘) ⊆ ℝ ∧ (vol*‘(𝐹𝑘)) ∈ ℝ) → (vol*‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ)
2517, 19, 23, 24syl3anc 1318 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ)
2616, 25eqeltrd 2688 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ)
2714, 26jca 553 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol ∧ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ))
2827expr 641 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ 𝑘 ∈ ℕ) → ((vol‘(𝐹𝑘)) ∈ ℝ → (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol ∧ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ)))
2928ralimdva 2945 . . . . . 6 ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ → ∀𝑘 ∈ ℕ (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol ∧ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ)))
3029imp 444 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → ∀𝑘 ∈ ℕ (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol ∧ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ))
31 fveq2 6103 . . . . . 6 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
3231iundisj2 23124 . . . . 5 Disj 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))
33 eqid 2610 . . . . . 6 seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) = seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))
34 eqid 2610 . . . . . 6 (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))) = (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))
3533, 34voliun 23129 . . . . 5 ((∀𝑘 ∈ ℕ (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol ∧ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ) ∧ Disj 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) → (vol‘ 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = sup(ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))), ℝ*, < ))
3630, 32, 35sylancl 693 . . . 4 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (vol‘ 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = sup(ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))), ℝ*, < ))
3731iundisj 23123 . . . . . 6 𝑘 ∈ ℕ (𝐹𝑘) = 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))
38 ffn 5958 . . . . . . . 8 (𝐹:ℕ⟶dom vol → 𝐹 Fn ℕ)
3938ad2antrr 758 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → 𝐹 Fn ℕ)
40 fniunfv 6409 . . . . . . 7 (𝐹 Fn ℕ → 𝑘 ∈ ℕ (𝐹𝑘) = ran 𝐹)
4139, 40syl 17 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → 𝑘 ∈ ℕ (𝐹𝑘) = ran 𝐹)
4237, 41syl5eqr 2658 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) = ran 𝐹)
4342fveq2d 6107 . . . 4 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (vol‘ 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = (vol‘ ran 𝐹))
44 1z 11284 . . . . . . . . . . 11 1 ∈ ℤ
45 seqfn 12675 . . . . . . . . . . 11 (1 ∈ ℤ → seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn (ℤ‘1))
4644, 45ax-mp 5 . . . . . . . . . 10 seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn (ℤ‘1)
476fneq2i 5900 . . . . . . . . . 10 (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn ℕ ↔ seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn (ℤ‘1))
4846, 47mpbir 220 . . . . . . . . 9 seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn ℕ
4948a1i 11 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn ℕ)
50 volf 23104 . . . . . . . . . 10 vol:dom vol⟶(0[,]+∞)
51 simpll 786 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → 𝐹:ℕ⟶dom vol)
52 fco 5971 . . . . . . . . . 10 ((vol:dom vol⟶(0[,]+∞) ∧ 𝐹:ℕ⟶dom vol) → (vol ∘ 𝐹):ℕ⟶(0[,]+∞))
5350, 51, 52sylancr 694 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (vol ∘ 𝐹):ℕ⟶(0[,]+∞))
54 ffn 5958 . . . . . . . . 9 ((vol ∘ 𝐹):ℕ⟶(0[,]+∞) → (vol ∘ 𝐹) Fn ℕ)
5553, 54syl 17 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (vol ∘ 𝐹) Fn ℕ)
56 fveq2 6103 . . . . . . . . . . . . 13 (𝑥 = 1 → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1))
57 fveq2 6103 . . . . . . . . . . . . . 14 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
5857fveq2d 6107 . . . . . . . . . . . . 13 (𝑥 = 1 → (vol‘(𝐹𝑥)) = (vol‘(𝐹‘1)))
5956, 58eqeq12d 2625 . . . . . . . . . . . 12 (𝑥 = 1 → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥)) ↔ (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = (vol‘(𝐹‘1))))
6059imbi2d 329 . . . . . . . . . . 11 (𝑥 = 1 → ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥))) ↔ (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = (vol‘(𝐹‘1)))))
61 fveq2 6103 . . . . . . . . . . . . 13 (𝑥 = 𝑗 → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗))
62 fveq2 6103 . . . . . . . . . . . . . 14 (𝑥 = 𝑗 → (𝐹𝑥) = (𝐹𝑗))
6362fveq2d 6107 . . . . . . . . . . . . 13 (𝑥 = 𝑗 → (vol‘(𝐹𝑥)) = (vol‘(𝐹𝑗)))
6461, 63eqeq12d 2625 . . . . . . . . . . . 12 (𝑥 = 𝑗 → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥)) ↔ (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗))))
6564imbi2d 329 . . . . . . . . . . 11 (𝑥 = 𝑗 → ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥))) ↔ (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗)))))
66 fveq2 6103 . . . . . . . . . . . . 13 (𝑥 = (𝑗 + 1) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)))
67 fveq2 6103 . . . . . . . . . . . . . 14 (𝑥 = (𝑗 + 1) → (𝐹𝑥) = (𝐹‘(𝑗 + 1)))
6867fveq2d 6107 . . . . . . . . . . . . 13 (𝑥 = (𝑗 + 1) → (vol‘(𝐹𝑥)) = (vol‘(𝐹‘(𝑗 + 1))))
6966, 68eqeq12d 2625 . . . . . . . . . . . 12 (𝑥 = (𝑗 + 1) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥)) ↔ (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1)))))
7069imbi2d 329 . . . . . . . . . . 11 (𝑥 = (𝑗 + 1) → ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥))) ↔ (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1))))))
71 seq1 12676 . . . . . . . . . . . . . 14 (1 ∈ ℤ → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘1))
7244, 71ax-mp 5 . . . . . . . . . . . . 13 (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘1)
73 1nn 10908 . . . . . . . . . . . . . 14 1 ∈ ℕ
74 oveq2 6557 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 1 → (1..^𝑘) = (1..^1))
75 fzo0 12361 . . . . . . . . . . . . . . . . . . . . . 22 (1..^1) = ∅
7674, 75syl6eq 2660 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 1 → (1..^𝑘) = ∅)
7776iuneq1d 4481 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 1 → 𝑚 ∈ (1..^𝑘)(𝐹𝑚) = 𝑚 ∈ ∅ (𝐹𝑚))
78 0iun 4513 . . . . . . . . . . . . . . . . . . . 20 𝑚 ∈ ∅ (𝐹𝑚) = ∅
7977, 78syl6eq 2660 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 1 → 𝑚 ∈ (1..^𝑘)(𝐹𝑚) = ∅)
8079difeq2d 3690 . . . . . . . . . . . . . . . . . 18 (𝑘 = 1 → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) = ((𝐹𝑘) ∖ ∅))
81 dif0 3904 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑘) ∖ ∅) = (𝐹𝑘)
8280, 81syl6eq 2660 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) = (𝐹𝑘))
83 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
8482, 83eqtrd 2644 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) = (𝐹‘1))
8584fveq2d 6107 . . . . . . . . . . . . . . 15 (𝑘 = 1 → (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = (vol‘(𝐹‘1)))
86 fvex 6113 . . . . . . . . . . . . . . 15 (vol‘(𝐹‘1)) ∈ V
8785, 34, 86fvmpt 6191 . . . . . . . . . . . . . 14 (1 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘1) = (vol‘(𝐹‘1)))
8873, 87ax-mp 5 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘1) = (vol‘(𝐹‘1))
8972, 88eqtri 2632 . . . . . . . . . . . 12 (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = (vol‘(𝐹‘1))
9089a1i 11 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = (vol‘(𝐹‘1)))
91 oveq1 6556 . . . . . . . . . . . . . 14 ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗)) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))) = ((vol‘(𝐹𝑗)) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
92 seqp1 12678 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ‘1) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
9392, 6eleq2s 2706 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
9493adantl 481 . . . . . . . . . . . . . . 15 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
95 undif2 3996 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = ((𝐹𝑗) ∪ (𝐹‘(𝑗 + 1)))
96 simpr 476 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
97 simpllr 795 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
98 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑗 → (𝐹𝑛) = (𝐹𝑗))
99 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑗 → (𝑛 + 1) = (𝑗 + 1))
10099fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑗 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑗 + 1)))
10198, 100sseq12d 3597 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑗 → ((𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ (𝐹𝑗) ⊆ (𝐹‘(𝑗 + 1))))
102101rspcv 3278 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → (∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) → (𝐹𝑗) ⊆ (𝐹‘(𝑗 + 1))))
10396, 97, 102sylc 63 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ⊆ (𝐹‘(𝑗 + 1)))
104 ssequn1 3745 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑗) ⊆ (𝐹‘(𝑗 + 1)) ↔ ((𝐹𝑗) ∪ (𝐹‘(𝑗 + 1))) = (𝐹‘(𝑗 + 1)))
105103, 104sylib 207 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹𝑗) ∪ (𝐹‘(𝑗 + 1))) = (𝐹‘(𝑗 + 1)))
10695, 105syl5req 2657 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 + 1)) = ((𝐹𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))))
107106fveq2d 6107 . . . . . . . . . . . . . . . 16 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹‘(𝑗 + 1))) = (vol‘((𝐹𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))))
108 simplll 794 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝐹:ℕ⟶dom vol)
109108, 96ffvelrnd 6268 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ dom vol)
110 peano2nn 10909 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
111110adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ)
112108, 111ffvelrnd 6268 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 + 1)) ∈ dom vol)
113 difmbl 23118 . . . . . . . . . . . . . . . . . 18 (((𝐹‘(𝑗 + 1)) ∈ dom vol ∧ (𝐹𝑗) ∈ dom vol) → ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ∈ dom vol)
114112, 109, 113syl2anc 691 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ∈ dom vol)
115 disjdif 3992 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑗) ∩ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = ∅
116115a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹𝑗) ∩ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = ∅)
117 simplr 788 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ)
118 fveq2 6103 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
119118fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑗 → (vol‘(𝐹𝑘)) = (vol‘(𝐹𝑗)))
120119eleq1d 2672 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → ((vol‘(𝐹𝑘)) ∈ ℝ ↔ (vol‘(𝐹𝑗)) ∈ ℝ))
121120rspcv 3278 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → (∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ → (vol‘(𝐹𝑗)) ∈ ℝ))
12296, 117, 121sylc 63 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹𝑗)) ∈ ℝ)
123 mblvol 23105 . . . . . . . . . . . . . . . . . . 19 (((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ∈ dom vol → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = (vol*‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))))
124114, 123syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = (vol*‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))))
125 difssd 3700 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ⊆ (𝐹‘(𝑗 + 1)))
126 mblss 23106 . . . . . . . . . . . . . . . . . . . 20 ((𝐹‘(𝑗 + 1)) ∈ dom vol → (𝐹‘(𝑗 + 1)) ⊆ ℝ)
127112, 126syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 + 1)) ⊆ ℝ)
128 mblvol 23105 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹‘(𝑗 + 1)) ∈ dom vol → (vol‘(𝐹‘(𝑗 + 1))) = (vol*‘(𝐹‘(𝑗 + 1))))
129112, 128syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹‘(𝑗 + 1))) = (vol*‘(𝐹‘(𝑗 + 1))))
130 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = (𝑗 + 1) → (𝐹𝑘) = (𝐹‘(𝑗 + 1)))
131130fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = (𝑗 + 1) → (vol‘(𝐹𝑘)) = (vol‘(𝐹‘(𝑗 + 1))))
132131eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (𝑗 + 1) → ((vol‘(𝐹𝑘)) ∈ ℝ ↔ (vol‘(𝐹‘(𝑗 + 1))) ∈ ℝ))
133132rspcv 3278 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 + 1) ∈ ℕ → (∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ → (vol‘(𝐹‘(𝑗 + 1))) ∈ ℝ))
134111, 117, 133sylc 63 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹‘(𝑗 + 1))) ∈ ℝ)
135129, 134eqeltrrd 2689 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol*‘(𝐹‘(𝑗 + 1))) ∈ ℝ)
136 ovolsscl 23061 . . . . . . . . . . . . . . . . . . 19 ((((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ⊆ (𝐹‘(𝑗 + 1)) ∧ (𝐹‘(𝑗 + 1)) ⊆ ℝ ∧ (vol*‘(𝐹‘(𝑗 + 1))) ∈ ℝ) → (vol*‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) ∈ ℝ)
137125, 127, 135, 136syl3anc 1318 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol*‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) ∈ ℝ)
138124, 137eqeltrd 2688 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) ∈ ℝ)
139 volun 23120 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑗) ∈ dom vol ∧ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ∈ dom vol ∧ ((𝐹𝑗) ∩ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = ∅) ∧ ((vol‘(𝐹𝑗)) ∈ ℝ ∧ (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) ∈ ℝ)) → (vol‘((𝐹𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))) = ((vol‘(𝐹𝑗)) + (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))))
140109, 114, 116, 122, 138, 139syl32anc 1326 . . . . . . . . . . . . . . . 16 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))) = ((vol‘(𝐹𝑗)) + (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))))
14197adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑗)) → ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
142 elfznn 12241 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ (1...𝑗) → 𝑚 ∈ ℕ)
143142adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑗)) → 𝑚 ∈ ℕ)
144 elfzuz3 12210 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ (1...𝑗) → 𝑗 ∈ (ℤ𝑚))
145144adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑗)) → 𝑗 ∈ (ℤ𝑚))
146 volsuplem 23130 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝑚 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑚))) → (𝐹𝑚) ⊆ (𝐹𝑗))
147141, 143, 145, 146syl12anc 1316 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑗)) → (𝐹𝑚) ⊆ (𝐹𝑗))
148147ralrimiva 2949 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ∀𝑚 ∈ (1...𝑗)(𝐹𝑚) ⊆ (𝐹𝑗))
149 iunss 4497 . . . . . . . . . . . . . . . . . . . . . . 23 ( 𝑚 ∈ (1...𝑗)(𝐹𝑚) ⊆ (𝐹𝑗) ↔ ∀𝑚 ∈ (1...𝑗)(𝐹𝑚) ⊆ (𝐹𝑗))
150148, 149sylibr 223 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑚 ∈ (1...𝑗)(𝐹𝑚) ⊆ (𝐹𝑗))
15196, 6syl6eleq 2698 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
152 eluzfz2 12220 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ (1...𝑗))
153151, 152syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (1...𝑗))
154 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = 𝑗 → (𝐹𝑚) = (𝐹𝑗))
155154ssiun2s 4500 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (1...𝑗) → (𝐹𝑗) ⊆ 𝑚 ∈ (1...𝑗)(𝐹𝑚))
156153, 155syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ⊆ 𝑚 ∈ (1...𝑗)(𝐹𝑚))
157150, 156eqssd 3585 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑚 ∈ (1...𝑗)(𝐹𝑚) = (𝐹𝑗))
15896nnzd 11357 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
159 fzval3 12404 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℤ → (1...𝑗) = (1..^(𝑗 + 1)))
160158, 159syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (1...𝑗) = (1..^(𝑗 + 1)))
161160iuneq1d 4481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑚 ∈ (1...𝑗)(𝐹𝑚) = 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))
162157, 161eqtr3d 2646 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))
163162difeq2d 3690 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) = ((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚)))
164163fveq2d 6107 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = (vol‘((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))))
165 oveq2 6557 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = (𝑗 + 1) → (1..^𝑘) = (1..^(𝑗 + 1)))
166165iuneq1d 4481 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (𝑗 + 1) → 𝑚 ∈ (1..^𝑘)(𝐹𝑚) = 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))
167130, 166difeq12d 3691 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = (𝑗 + 1) → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) = ((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚)))
168167fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = (𝑗 + 1) → (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = (vol‘((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))))
169 fvex 6113 . . . . . . . . . . . . . . . . . . . 20 (vol‘((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))) ∈ V
170168, 34, 169fvmpt 6191 . . . . . . . . . . . . . . . . . . 19 ((𝑗 + 1) ∈ ℕ → ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1)) = (vol‘((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))))
171111, 170syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1)) = (vol‘((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))))
172164, 171eqtr4d 2647 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1)))
173172oveq2d 6565 . . . . . . . . . . . . . . . 16 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((vol‘(𝐹𝑗)) + (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))) = ((vol‘(𝐹𝑗)) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
174107, 140, 1733eqtrd 2648 . . . . . . . . . . . . . . 15 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹‘(𝑗 + 1))) = ((vol‘(𝐹𝑗)) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
17594, 174eqeq12d 2625 . . . . . . . . . . . . . 14 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1))) ↔ ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))) = ((vol‘(𝐹𝑗)) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1)))))
17691, 175syl5ibr 235 . . . . . . . . . . . . 13 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗)) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1)))))
177176expcom 450 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗)) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1))))))
178177a2d 29 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗))) → (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1))))))
17960, 65, 70, 65, 90, 178nnind 10915 . . . . . . . . . 10 (𝑗 ∈ ℕ → (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗))))
180179impcom 445 . . . . . . . . 9 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗)))
181 fvco3 6185 . . . . . . . . . 10 ((𝐹:ℕ⟶dom vol ∧ 𝑗 ∈ ℕ) → ((vol ∘ 𝐹)‘𝑗) = (vol‘(𝐹𝑗)))
18251, 181sylan 487 . . . . . . . . 9 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((vol ∘ 𝐹)‘𝑗) = (vol‘(𝐹𝑗)))
183180, 182eqtr4d 2647 . . . . . . . 8 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = ((vol ∘ 𝐹)‘𝑗))
18449, 55, 183eqfnfvd 6222 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) = (vol ∘ 𝐹))
185184rneqd 5274 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) = ran (vol ∘ 𝐹))
186 rnco2 5559 . . . . . 6 ran (vol ∘ 𝐹) = (vol “ ran 𝐹)
187185, 186syl6eq 2660 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) = (vol “ ran 𝐹))
188187supeq1d 8235 . . . 4 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → sup(ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))), ℝ*, < ) = sup((vol “ ran 𝐹), ℝ*, < ))
18936, 43, 1883eqtr3d 2652 . . 3 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < ))
190189ex 449 . 2 ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < )))
191 rexnal 2978 . . 3 (∃𝑘 ∈ ℕ ¬ (vol‘(𝐹𝑘)) ∈ ℝ ↔ ¬ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ)
192 fniunfv 6409 . . . . . . . . . . . 12 (𝐹 Fn ℕ → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
19338, 192syl 17 . . . . . . . . . . 11 (𝐹:ℕ⟶dom vol → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
194 ffvelrn 6265 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶dom vol ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ dom vol)
195194ralrimiva 2949 . . . . . . . . . . . 12 (𝐹:ℕ⟶dom vol → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ dom vol)
196 iunmbl 23128 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ (𝐹𝑛) ∈ dom vol → 𝑛 ∈ ℕ (𝐹𝑛) ∈ dom vol)
197195, 196syl 17 . . . . . . . . . . 11 (𝐹:ℕ⟶dom vol → 𝑛 ∈ ℕ (𝐹𝑛) ∈ dom vol)
198193, 197eqeltrrd 2689 . . . . . . . . . 10 (𝐹:ℕ⟶dom vol → ran 𝐹 ∈ dom vol)
199198ad2antrr 758 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ran 𝐹 ∈ dom vol)
200 mblss 23106 . . . . . . . . 9 ( ran 𝐹 ∈ dom vol → ran 𝐹 ⊆ ℝ)
201199, 200syl 17 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ran 𝐹 ⊆ ℝ)
202 ovolcl 23053 . . . . . . . 8 ( ran 𝐹 ⊆ ℝ → (vol*‘ ran 𝐹) ∈ ℝ*)
203201, 202syl 17 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘ ran 𝐹) ∈ ℝ*)
204 pnfge 11840 . . . . . . 7 ((vol*‘ ran 𝐹) ∈ ℝ* → (vol*‘ ran 𝐹) ≤ +∞)
205203, 204syl 17 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘ ran 𝐹) ≤ +∞)
206 simprr 792 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ¬ (vol‘(𝐹𝑘)) ∈ ℝ)
2071ad2ant2r 779 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ∈ dom vol)
208207, 18syl 17 . . . . . . . . . . . 12 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ⊆ ℝ)
209 ovolcl 23053 . . . . . . . . . . . 12 ((𝐹𝑘) ⊆ ℝ → (vol*‘(𝐹𝑘)) ∈ ℝ*)
210208, 209syl 17 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘(𝐹𝑘)) ∈ ℝ*)
211 xrrebnd 11873 . . . . . . . . . . 11 ((vol*‘(𝐹𝑘)) ∈ ℝ* → ((vol*‘(𝐹𝑘)) ∈ ℝ ↔ (-∞ < (vol*‘(𝐹𝑘)) ∧ (vol*‘(𝐹𝑘)) < +∞)))
212210, 211syl 17 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol*‘(𝐹𝑘)) ∈ ℝ ↔ (-∞ < (vol*‘(𝐹𝑘)) ∧ (vol*‘(𝐹𝑘)) < +∞)))
213207, 20syl 17 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘(𝐹𝑘)) = (vol*‘(𝐹𝑘)))
214213eleq1d 2672 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol‘(𝐹𝑘)) ∈ ℝ ↔ (vol*‘(𝐹𝑘)) ∈ ℝ))
215 ovolge0 23056 . . . . . . . . . . . . 13 ((𝐹𝑘) ⊆ ℝ → 0 ≤ (vol*‘(𝐹𝑘)))
216 mnflt0 11835 . . . . . . . . . . . . . 14 -∞ < 0
217 mnfxr 9975 . . . . . . . . . . . . . . 15 -∞ ∈ ℝ*
218 0xr 9965 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
219 xrltletr 11864 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (vol*‘(𝐹𝑘)) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (vol*‘(𝐹𝑘))) → -∞ < (vol*‘(𝐹𝑘))))
220217, 218, 219mp3an12 1406 . . . . . . . . . . . . . 14 ((vol*‘(𝐹𝑘)) ∈ ℝ* → ((-∞ < 0 ∧ 0 ≤ (vol*‘(𝐹𝑘))) → -∞ < (vol*‘(𝐹𝑘))))
221216, 220mpani 708 . . . . . . . . . . . . 13 ((vol*‘(𝐹𝑘)) ∈ ℝ* → (0 ≤ (vol*‘(𝐹𝑘)) → -∞ < (vol*‘(𝐹𝑘))))
222209, 215, 221sylc 63 . . . . . . . . . . . 12 ((𝐹𝑘) ⊆ ℝ → -∞ < (vol*‘(𝐹𝑘)))
223208, 222syl 17 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → -∞ < (vol*‘(𝐹𝑘)))
224223biantrurd 528 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol*‘(𝐹𝑘)) < +∞ ↔ (-∞ < (vol*‘(𝐹𝑘)) ∧ (vol*‘(𝐹𝑘)) < +∞)))
225212, 214, 2243bitr4d 299 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol‘(𝐹𝑘)) ∈ ℝ ↔ (vol*‘(𝐹𝑘)) < +∞))
226206, 225mtbid 313 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ¬ (vol*‘(𝐹𝑘)) < +∞)
227 nltpnft 11871 . . . . . . . . 9 ((vol*‘(𝐹𝑘)) ∈ ℝ* → ((vol*‘(𝐹𝑘)) = +∞ ↔ ¬ (vol*‘(𝐹𝑘)) < +∞))
228210, 227syl 17 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol*‘(𝐹𝑘)) = +∞ ↔ ¬ (vol*‘(𝐹𝑘)) < +∞))
229226, 228mpbird 246 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘(𝐹𝑘)) = +∞)
23038ad2antrr 758 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → 𝐹 Fn ℕ)
231 simprl 790 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → 𝑘 ∈ ℕ)
232 fnfvelrn 6264 . . . . . . . . . 10 ((𝐹 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ran 𝐹)
233230, 231, 232syl2anc 691 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ∈ ran 𝐹)
234 elssuni 4403 . . . . . . . . 9 ((𝐹𝑘) ∈ ran 𝐹 → (𝐹𝑘) ⊆ ran 𝐹)
235233, 234syl 17 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ⊆ ran 𝐹)
236 ovolss 23060 . . . . . . . 8 (((𝐹𝑘) ⊆ ran 𝐹 ran 𝐹 ⊆ ℝ) → (vol*‘(𝐹𝑘)) ≤ (vol*‘ ran 𝐹))
237235, 201, 236syl2anc 691 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘(𝐹𝑘)) ≤ (vol*‘ ran 𝐹))
238229, 237eqbrtrrd 4607 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → +∞ ≤ (vol*‘ ran 𝐹))
239 pnfxr 9971 . . . . . . 7 +∞ ∈ ℝ*
240 xrletri3 11861 . . . . . . 7 (((vol*‘ ran 𝐹) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((vol*‘ ran 𝐹) = +∞ ↔ ((vol*‘ ran 𝐹) ≤ +∞ ∧ +∞ ≤ (vol*‘ ran 𝐹))))
241203, 239, 240sylancl 693 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol*‘ ran 𝐹) = +∞ ↔ ((vol*‘ ran 𝐹) ≤ +∞ ∧ +∞ ≤ (vol*‘ ran 𝐹))))
242205, 238, 241mpbir2and 959 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘ ran 𝐹) = +∞)
243 mblvol 23105 . . . . . 6 ( ran 𝐹 ∈ dom vol → (vol‘ ran 𝐹) = (vol*‘ ran 𝐹))
244199, 243syl 17 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘ ran 𝐹) = (vol*‘ ran 𝐹))
245 imassrn 5396 . . . . . . 7 (vol “ ran 𝐹) ⊆ ran vol
246 frn 5966 . . . . . . . . 9 (vol:dom vol⟶(0[,]+∞) → ran vol ⊆ (0[,]+∞))
24750, 246ax-mp 5 . . . . . . . 8 ran vol ⊆ (0[,]+∞)
248 iccssxr 12127 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
249247, 248sstri 3577 . . . . . . 7 ran vol ⊆ ℝ*
250245, 249sstri 3577 . . . . . 6 (vol “ ran 𝐹) ⊆ ℝ*
251213, 229eqtrd 2644 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘(𝐹𝑘)) = +∞)
252 simpll 786 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → 𝐹:ℕ⟶dom vol)
253 ffun 5961 . . . . . . . . . 10 (vol:dom vol⟶(0[,]+∞) → Fun vol)
25450, 253ax-mp 5 . . . . . . . . 9 Fun vol
255 frn 5966 . . . . . . . . 9 (𝐹:ℕ⟶dom vol → ran 𝐹 ⊆ dom vol)
256 funfvima2 6397 . . . . . . . . 9 ((Fun vol ∧ ran 𝐹 ⊆ dom vol) → ((𝐹𝑘) ∈ ran 𝐹 → (vol‘(𝐹𝑘)) ∈ (vol “ ran 𝐹)))
257254, 255, 256sylancr 694 . . . . . . . 8 (𝐹:ℕ⟶dom vol → ((𝐹𝑘) ∈ ran 𝐹 → (vol‘(𝐹𝑘)) ∈ (vol “ ran 𝐹)))
258252, 233, 257sylc 63 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘(𝐹𝑘)) ∈ (vol “ ran 𝐹))
259251, 258eqeltrrd 2689 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → +∞ ∈ (vol “ ran 𝐹))
260 supxrpnf 12020 . . . . . 6 (((vol “ ran 𝐹) ⊆ ℝ* ∧ +∞ ∈ (vol “ ran 𝐹)) → sup((vol “ ran 𝐹), ℝ*, < ) = +∞)
261250, 259, 260sylancr 694 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → sup((vol “ ran 𝐹), ℝ*, < ) = +∞)
262242, 244, 2613eqtr4d 2654 . . . 4 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < ))
263262rexlimdvaa 3014 . . 3 ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (∃𝑘 ∈ ℕ ¬ (vol‘(𝐹𝑘)) ∈ ℝ → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < )))
264191, 263syl5bir 232 . 2 ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (¬ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < )))
265190, 264pm2.61d 169 1 ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874   cuni 4372   ciun 4455  Disj wdisj 4553   class class class wbr 4583  cmpt 4643  dom cdm 5038  ran crn 5039  cima 5041  ccom 5042  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  supcsup 8229  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952   < clt 9953  cle 9954  cn 10897  cz 11254  cuz 11563  [,]cicc 12049  ...cfz 12197  ..^cfzo 12334  seqcseq 12663  vol*covol 23038  volcvol 23039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-xmet 19560  df-met 19561  df-ovol 23040  df-vol 23041
This theorem is referenced by:  volsup2  23179  itg1climres  23287  itg2gt0  23333
  Copyright terms: Public domain W3C validator