MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunmbl Structured version   Visualization version   GIF version

Theorem iunmbl 23128
Description: The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
iunmbl (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 ∈ dom vol)

Proof of Theorem iunmbl
Dummy variables 𝑖 𝑘 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1830 . . . . 5 𝑘 𝐴 ∈ dom vol
2 nfcsb1v 3515 . . . . . 6 𝑛𝑘 / 𝑛𝐴
32nfel1 2765 . . . . 5 𝑛𝑘 / 𝑛𝐴 ∈ dom vol
4 csbeq1a 3508 . . . . . 6 (𝑛 = 𝑘𝐴 = 𝑘 / 𝑛𝐴)
54eleq1d 2672 . . . . 5 (𝑛 = 𝑘 → (𝐴 ∈ dom vol ↔ 𝑘 / 𝑛𝐴 ∈ dom vol))
61, 3, 5cbvral 3143 . . . 4 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ↔ ∀𝑘 ∈ ℕ 𝑘 / 𝑛𝐴 ∈ dom vol)
7 nfcv 2751 . . . . . . 7 𝑘𝐴
87, 2, 4cbviun 4493 . . . . . 6 𝑛 ∈ ℕ 𝐴 = 𝑘 ∈ ℕ 𝑘 / 𝑛𝐴
9 csbeq1 3502 . . . . . . 7 (𝑘 = 𝑚𝑘 / 𝑛𝐴 = 𝑚 / 𝑛𝐴)
109iundisj 23123 . . . . . 6 𝑘 ∈ ℕ 𝑘 / 𝑛𝐴 = 𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)
118, 10eqtri 2632 . . . . 5 𝑛 ∈ ℕ 𝐴 = 𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)
12 difexg 4735 . . . . . . 7 (𝑘 / 𝑛𝐴 ∈ dom vol → (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) ∈ V)
1312ralimi 2936 . . . . . 6 (∀𝑘 ∈ ℕ 𝑘 / 𝑛𝐴 ∈ dom vol → ∀𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) ∈ V)
14 dfiun2g 4488 . . . . . 6 (∀𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) ∈ V → 𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)})
1513, 14syl 17 . . . . 5 (∀𝑘 ∈ ℕ 𝑘 / 𝑛𝐴 ∈ dom vol → 𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)})
1611, 15syl5eq 2656 . . . 4 (∀𝑘 ∈ ℕ 𝑘 / 𝑛𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)})
176, 16sylbi 206 . . 3 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)})
18 eqid 2610 . . . . 5 (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)) = (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))
1918rnmpt 5292 . . . 4 ran (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)) = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)}
2019unieqi 4381 . . 3 ran (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)) = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)}
2117, 20syl6eqr 2662 . 2 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 = ran (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)))
223, 5rspc 3276 . . . . . 6 (𝑘 ∈ ℕ → (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑘 / 𝑛𝐴 ∈ dom vol))
2322impcom 445 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → 𝑘 / 𝑛𝐴 ∈ dom vol)
24 fzofi 12635 . . . . . 6 (1..^𝑘) ∈ Fin
25 nfv 1830 . . . . . . . . 9 𝑚 𝐴 ∈ dom vol
26 nfcsb1v 3515 . . . . . . . . . 10 𝑛𝑚 / 𝑛𝐴
2726nfel1 2765 . . . . . . . . 9 𝑛𝑚 / 𝑛𝐴 ∈ dom vol
28 csbeq1a 3508 . . . . . . . . . 10 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
2928eleq1d 2672 . . . . . . . . 9 (𝑛 = 𝑚 → (𝐴 ∈ dom vol ↔ 𝑚 / 𝑛𝐴 ∈ dom vol))
3025, 27, 29cbvral 3143 . . . . . . . 8 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ↔ ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ∈ dom vol)
31 fzossnn 12384 . . . . . . . . 9 (1..^𝑘) ⊆ ℕ
32 ssralv 3629 . . . . . . . . 9 ((1..^𝑘) ⊆ ℕ → (∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ∈ dom vol → ∀𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol))
3331, 32ax-mp 5 . . . . . . . 8 (∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ∈ dom vol → ∀𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol)
3430, 33sylbi 206 . . . . . . 7 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → ∀𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol)
3534adantr 480 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → ∀𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol)
36 finiunmbl 23119 . . . . . 6 (((1..^𝑘) ∈ Fin ∧ ∀𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol) → 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol)
3724, 35, 36sylancr 694 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol)
38 difmbl 23118 . . . . 5 ((𝑘 / 𝑛𝐴 ∈ dom vol ∧ 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol) → (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) ∈ dom vol)
3923, 37, 38syl2anc 691 . . . 4 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) ∈ dom vol)
4039, 18fmptd 6292 . . 3 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)):ℕ⟶dom vol)
41 csbeq1 3502 . . . . 5 (𝑖 = 𝑚𝑖 / 𝑛𝐴 = 𝑚 / 𝑛𝐴)
4241iundisj2 23124 . . . 4 Disj 𝑖 ∈ ℕ (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴)
43 simpr 476 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
44 nfcsb1v 3515 . . . . . . . . . 10 𝑛𝑖 / 𝑛𝐴
4544nfel1 2765 . . . . . . . . 9 𝑛𝑖 / 𝑛𝐴 ∈ dom vol
46 csbeq1a 3508 . . . . . . . . . 10 (𝑛 = 𝑖𝐴 = 𝑖 / 𝑛𝐴)
4746eleq1d 2672 . . . . . . . . 9 (𝑛 = 𝑖 → (𝐴 ∈ dom vol ↔ 𝑖 / 𝑛𝐴 ∈ dom vol))
4845, 47rspc 3276 . . . . . . . 8 (𝑖 ∈ ℕ → (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑖 / 𝑛𝐴 ∈ dom vol))
4948impcom 445 . . . . . . 7 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑖 ∈ ℕ) → 𝑖 / 𝑛𝐴 ∈ dom vol)
50 difexg 4735 . . . . . . 7 (𝑖 / 𝑛𝐴 ∈ dom vol → (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴) ∈ V)
5149, 50syl 17 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑖 ∈ ℕ) → (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴) ∈ V)
52 csbeq1 3502 . . . . . . . 8 (𝑘 = 𝑖𝑘 / 𝑛𝐴 = 𝑖 / 𝑛𝐴)
53 oveq2 6557 . . . . . . . . 9 (𝑘 = 𝑖 → (1..^𝑘) = (1..^𝑖))
5453iuneq1d 4481 . . . . . . . 8 (𝑘 = 𝑖 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 = 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴)
5552, 54difeq12d 3691 . . . . . . 7 (𝑘 = 𝑖 → (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) = (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴))
5655, 18fvmptg 6189 . . . . . 6 ((𝑖 ∈ ℕ ∧ (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴) ∈ V) → ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑖) = (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴))
5743, 51, 56syl2anc 691 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑖 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑖) = (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴))
5857disjeq2dv 4558 . . . 4 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → (Disj 𝑖 ∈ ℕ ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑖) ↔ Disj 𝑖 ∈ ℕ (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴)))
5942, 58mpbiri 247 . . 3 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → Disj 𝑖 ∈ ℕ ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑖))
60 eqid 2610 . . 3 (𝑦 ∈ ℕ ↦ (vol*‘(𝑥 ∩ ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑦)))) = (𝑦 ∈ ℕ ↦ (vol*‘(𝑥 ∩ ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑦))))
6140, 59, 60voliunlem2 23126 . 2 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → ran (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)) ∈ dom vol)
6221, 61eqeltrd 2688 1 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  Vcvv 3173  csb 3499  cdif 3537  cin 3539  wss 3540   cuni 4372   ciun 4455  Disj wdisj 4553  cmpt 4643  dom cdm 5038  ran crn 5039  cfv 5804  (class class class)co 6549  Fincfn 7841  1c1 9816  cn 10897  ..^cfzo 12334  vol*covol 23038  volcvol 23039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-xmet 19560  df-met 19561  df-ovol 23040  df-vol 23041
This theorem is referenced by:  volsup  23131  iunmbl2  23132  vitalilem4  23186  vitalilem5  23187  ismbf3d  23227  itg2gt0  23333  voliune  29619  dmvolsal  39240  voliunsge0lem  39365
  Copyright terms: Public domain W3C validator