Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fniunfv | Structured version Visualization version GIF version |
Description: The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.) |
Ref | Expression |
---|---|
fniunfv | ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrnfv 6152 | . . 3 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) | |
2 | 1 | unieqd 4382 | . 2 ⊢ (𝐹 Fn 𝐴 → ∪ ran 𝐹 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
3 | fvex 6113 | . . 3 ⊢ (𝐹‘𝑥) ∈ V | |
4 | 3 | dfiun2 4490 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} |
5 | 2, 4 | syl6reqr 2663 | 1 ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 {cab 2596 ∃wrex 2897 ∪ cuni 4372 ∪ ciun 4455 ran crn 5039 Fn wfn 5799 ‘cfv 5804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-iota 5768 df-fun 5806 df-fn 5807 df-fv 5812 |
This theorem is referenced by: funiunfv 6410 dffi3 8220 jech9.3 8560 hsmexlem5 9135 wuncval2 9448 dprdspan 18249 tgcmp 21014 txcmplem1 21254 txcmplem2 21255 xkococnlem 21272 alexsubALT 21665 bcth3 22936 ovolfioo 23043 ovolficc 23044 voliunlem2 23126 voliunlem3 23127 volsup 23131 uniiccdif 23152 uniioovol 23153 uniiccvol 23154 uniioombllem2 23157 uniioombllem4 23160 volsup2 23179 itg1climres 23287 itg2monolem1 23323 itg2gt0 23333 sigapildsys 29552 omssubadd 29689 carsgclctunlem3 29709 dftrpred2 30963 volsupnfl 32624 hbt 36719 ovolval4lem1 39539 ovolval5lem3 39544 ovnovollem1 39546 ovnovollem2 39547 |
Copyright terms: Public domain | W3C validator |