MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrrebnd Structured version   Visualization version   GIF version

Theorem xrrebnd 11873
Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
xrrebnd (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))

Proof of Theorem xrrebnd
StepHypRef Expression
1 mnflt 11833 . . 3 (𝐴 ∈ ℝ → -∞ < 𝐴)
2 ltpnf 11830 . . 3 (𝐴 ∈ ℝ → 𝐴 < +∞)
31, 2jca 553 . 2 (𝐴 ∈ ℝ → (-∞ < 𝐴𝐴 < +∞))
4 nltpnft 11871 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
5 ngtmnft 11872 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
64, 5orbi12d 742 . . . . 5 (𝐴 ∈ ℝ* → ((𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴)))
7 ianor 508 . . . . . 6 (¬ (-∞ < 𝐴𝐴 < +∞) ↔ (¬ -∞ < 𝐴 ∨ ¬ 𝐴 < +∞))
8 orcom 401 . . . . . 6 ((¬ -∞ < 𝐴 ∨ ¬ 𝐴 < +∞) ↔ (¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴))
97, 8bitr2i 264 . . . . 5 ((¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴) ↔ ¬ (-∞ < 𝐴𝐴 < +∞))
106, 9syl6bb 275 . . . 4 (𝐴 ∈ ℝ* → ((𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ¬ (-∞ < 𝐴𝐴 < +∞)))
1110con2bid 343 . . 3 (𝐴 ∈ ℝ* → ((-∞ < 𝐴𝐴 < +∞) ↔ ¬ (𝐴 = +∞ ∨ 𝐴 = -∞)))
12 elxr 11826 . . . . 5 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
13 3orass 1034 . . . . . 6 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞)))
14 orcom 401 . . . . . 6 ((𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞)) ↔ ((𝐴 = +∞ ∨ 𝐴 = -∞) ∨ 𝐴 ∈ ℝ))
1513, 14bitri 263 . . . . 5 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ((𝐴 = +∞ ∨ 𝐴 = -∞) ∨ 𝐴 ∈ ℝ))
1612, 15sylbb 208 . . . 4 (𝐴 ∈ ℝ* → ((𝐴 = +∞ ∨ 𝐴 = -∞) ∨ 𝐴 ∈ ℝ))
1716ord 391 . . 3 (𝐴 ∈ ℝ* → (¬ (𝐴 = +∞ ∨ 𝐴 = -∞) → 𝐴 ∈ ℝ))
1811, 17sylbid 229 . 2 (𝐴 ∈ ℝ* → ((-∞ < 𝐴𝐴 < +∞) → 𝐴 ∈ ℝ))
193, 18impbid2 215 1 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3o 1030   = wceq 1475  wcel 1977   class class class wbr 4583  cr 9814  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952   < clt 9953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959
This theorem is referenced by:  xrre  11874  xrre2  11875  xrre3  11876  supxrre1  12032  elioc2  12107  elico2  12108  elicc2  12109  xblpnfps  22010  xblpnf  22011  isnghm3  22339  ovoliun  23080  ovolicopnf  23099  voliunlem3  23127  volsup  23131  itg2seq  23315  nmblore  27025  nmopre  28113  supxrgere  38490  supxrgelem  38494  supxrge  38495  suplesup  38496  infrpge  38508  limsupre  38708
  Copyright terms: Public domain W3C validator