MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisumlem2 Structured version   Visualization version   GIF version

Theorem dchrisumlem2 24979
Description: Lemma for dchrisum 24981. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrisum.2 (𝑛 = 𝑥𝐴 = 𝐵)
dchrisum.3 (𝜑𝑀 ∈ ℕ)
dchrisum.4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
dchrisum.5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
dchrisum.6 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
dchrisum.7 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · 𝐴))
dchrisum.9 (𝜑𝑅 ∈ ℝ)
dchrisum.10 (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛))) ≤ 𝑅)
dchrisumlem2.1 (𝜑𝑈 ∈ ℝ+)
dchrisumlem2.2 (𝜑𝑀𝑈)
dchrisumlem2.3 (𝜑𝑈 ≤ (𝐼 + 1))
dchrisumlem2.4 (𝜑𝐼 ∈ ℕ)
dchrisumlem2.5 (𝜑𝐽 ∈ (ℤ𝐼))
Assertion
Ref Expression
dchrisumlem2 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝐽) − (seq1( + , 𝐹)‘𝐼))) ≤ ((2 · 𝑅) · 𝑈 / 𝑛𝐴))
Distinct variable groups:   𝑢,𝑛,𝑥   1 ,𝑛,𝑥   𝑛,𝐹,𝑢,𝑥   𝑛,𝐼,𝑢,𝑥   𝑛,𝐽,𝑢,𝑥   𝑥,𝐴   𝑛,𝑁,𝑢,𝑥   𝜑,𝑛,𝑢,𝑥   𝑅,𝑛,𝑢,𝑥   𝑈,𝑛,𝑢,𝑥   𝐵,𝑛   𝑛,𝑍,𝑥   𝐷,𝑛,𝑥   𝑛,𝐿,𝑢,𝑥   𝑛,𝑀,𝑢,𝑥   𝑛,𝑋,𝑢,𝑥
Allowed substitution hints:   𝐴(𝑢,𝑛)   𝐵(𝑥,𝑢)   𝐷(𝑢)   1 (𝑢)   𝐺(𝑥,𝑢,𝑛)   𝑍(𝑢)

Proof of Theorem dchrisumlem2
Dummy variables 𝑘 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzodisj 12371 . . . . . . . . 9 ((1..^(𝐼 + 1)) ∩ ((𝐼 + 1)..^(𝐽 + 1))) = ∅
21a1i 11 . . . . . . . 8 (𝜑 → ((1..^(𝐼 + 1)) ∩ ((𝐼 + 1)..^(𝐽 + 1))) = ∅)
3 dchrisumlem2.4 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℕ)
43peano2nnd 10914 . . . . . . . . . . 11 (𝜑 → (𝐼 + 1) ∈ ℕ)
5 nnuz 11599 . . . . . . . . . . 11 ℕ = (ℤ‘1)
64, 5syl6eleq 2698 . . . . . . . . . 10 (𝜑 → (𝐼 + 1) ∈ (ℤ‘1))
7 dchrisumlem2.5 . . . . . . . . . . 11 (𝜑𝐽 ∈ (ℤ𝐼))
8 eluzp1p1 11589 . . . . . . . . . . 11 (𝐽 ∈ (ℤ𝐼) → (𝐽 + 1) ∈ (ℤ‘(𝐼 + 1)))
97, 8syl 17 . . . . . . . . . 10 (𝜑 → (𝐽 + 1) ∈ (ℤ‘(𝐼 + 1)))
10 elfzuzb 12207 . . . . . . . . . 10 ((𝐼 + 1) ∈ (1...(𝐽 + 1)) ↔ ((𝐼 + 1) ∈ (ℤ‘1) ∧ (𝐽 + 1) ∈ (ℤ‘(𝐼 + 1))))
116, 9, 10sylanbrc 695 . . . . . . . . 9 (𝜑 → (𝐼 + 1) ∈ (1...(𝐽 + 1)))
12 fzosplit 12370 . . . . . . . . 9 ((𝐼 + 1) ∈ (1...(𝐽 + 1)) → (1..^(𝐽 + 1)) = ((1..^(𝐼 + 1)) ∪ ((𝐼 + 1)..^(𝐽 + 1))))
1311, 12syl 17 . . . . . . . 8 (𝜑 → (1..^(𝐽 + 1)) = ((1..^(𝐼 + 1)) ∪ ((𝐼 + 1)..^(𝐽 + 1))))
14 fzofi 12635 . . . . . . . . 9 (1..^(𝐽 + 1)) ∈ Fin
1514a1i 11 . . . . . . . 8 (𝜑 → (1..^(𝐽 + 1)) ∈ Fin)
16 elfzouz 12343 . . . . . . . . . 10 (𝑖 ∈ (1..^(𝐽 + 1)) → 𝑖 ∈ (ℤ‘1))
1716, 5syl6eleqr 2699 . . . . . . . . 9 (𝑖 ∈ (1..^(𝐽 + 1)) → 𝑖 ∈ ℕ)
18 rpvmasum.g . . . . . . . . . . 11 𝐺 = (DChr‘𝑁)
19 rpvmasum.z . . . . . . . . . . 11 𝑍 = (ℤ/nℤ‘𝑁)
20 rpvmasum.d . . . . . . . . . . 11 𝐷 = (Base‘𝐺)
21 rpvmasum.l . . . . . . . . . . 11 𝐿 = (ℤRHom‘𝑍)
22 dchrisum.b . . . . . . . . . . . 12 (𝜑𝑋𝐷)
2322adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → 𝑋𝐷)
24 nnz 11276 . . . . . . . . . . . 12 (𝑖 ∈ ℕ → 𝑖 ∈ ℤ)
2524adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
2618, 19, 20, 21, 23, 25dchrzrhcl 24770 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → (𝑋‘(𝐿𝑖)) ∈ ℂ)
27 nnrp 11718 . . . . . . . . . . . . 13 (𝑖 ∈ ℕ → 𝑖 ∈ ℝ+)
28 rpvmasum.a . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ)
29 rpvmasum.1 . . . . . . . . . . . . . . 15 1 = (0g𝐺)
30 dchrisum.n1 . . . . . . . . . . . . . . 15 (𝜑𝑋1 )
31 dchrisum.2 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥𝐴 = 𝐵)
32 dchrisum.3 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ)
33 dchrisum.4 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
34 dchrisum.5 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
35 dchrisum.6 . . . . . . . . . . . . . . 15 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
36 dchrisum.7 . . . . . . . . . . . . . . 15 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · 𝐴))
3719, 21, 28, 18, 20, 29, 22, 30, 31, 32, 33, 34, 35, 36dchrisumlema 24977 . . . . . . . . . . . . . 14 (𝜑 → ((𝑖 ∈ ℝ+𝑖 / 𝑛𝐴 ∈ ℝ) ∧ (𝑖 ∈ (𝑀[,)+∞) → 0 ≤ 𝑖 / 𝑛𝐴)))
3837simpld 474 . . . . . . . . . . . . 13 (𝜑 → (𝑖 ∈ ℝ+𝑖 / 𝑛𝐴 ∈ ℝ))
3927, 38syl5 33 . . . . . . . . . . . 12 (𝜑 → (𝑖 ∈ ℕ → 𝑖 / 𝑛𝐴 ∈ ℝ))
4039imp 444 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → 𝑖 / 𝑛𝐴 ∈ ℝ)
4140recnd 9947 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → 𝑖 / 𝑛𝐴 ∈ ℂ)
4226, 41mulcld 9939 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) ∈ ℂ)
4317, 42sylan2 490 . . . . . . . 8 ((𝜑𝑖 ∈ (1..^(𝐽 + 1))) → ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) ∈ ℂ)
442, 13, 15, 43fsumsplit 14318 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = (Σ𝑖 ∈ (1..^(𝐼 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) + Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)))
45 eluzelz 11573 . . . . . . . . 9 (𝐽 ∈ (ℤ𝐼) → 𝐽 ∈ ℤ)
46 fzval3 12404 . . . . . . . . 9 (𝐽 ∈ ℤ → (1...𝐽) = (1..^(𝐽 + 1)))
477, 45, 463syl 18 . . . . . . . 8 (𝜑 → (1...𝐽) = (1..^(𝐽 + 1)))
4847sumeq1d 14279 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...𝐽)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = Σ𝑖 ∈ (1..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴))
493nnzd 11357 . . . . . . . . . 10 (𝜑𝐼 ∈ ℤ)
50 fzval3 12404 . . . . . . . . . 10 (𝐼 ∈ ℤ → (1...𝐼) = (1..^(𝐼 + 1)))
5149, 50syl 17 . . . . . . . . 9 (𝜑 → (1...𝐼) = (1..^(𝐼 + 1)))
5251sumeq1d 14279 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = Σ𝑖 ∈ (1..^(𝐼 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴))
5352oveq1d 6564 . . . . . . 7 (𝜑 → (Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) + Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) = (Σ𝑖 ∈ (1..^(𝐼 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) + Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)))
5444, 48, 533eqtr4d 2654 . . . . . 6 (𝜑 → Σ𝑖 ∈ (1...𝐽)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = (Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) + Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)))
55 elfznn 12241 . . . . . . . 8 (𝑖 ∈ (1...𝐽) → 𝑖 ∈ ℕ)
56 simpr 476 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
57 nfcv 2751 . . . . . . . . . 10 𝑛𝑖
58 nfcv 2751 . . . . . . . . . . 11 𝑛(𝑋‘(𝐿𝑖))
59 nfcv 2751 . . . . . . . . . . 11 𝑛 ·
60 nfcsb1v 3515 . . . . . . . . . . 11 𝑛𝑖 / 𝑛𝐴
6158, 59, 60nfov 6575 . . . . . . . . . 10 𝑛((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)
62 fveq2 6103 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (𝐿𝑛) = (𝐿𝑖))
6362fveq2d 6107 . . . . . . . . . . 11 (𝑛 = 𝑖 → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿𝑖)))
64 csbeq1a 3508 . . . . . . . . . . 11 (𝑛 = 𝑖𝐴 = 𝑖 / 𝑛𝐴)
6563, 64oveq12d 6567 . . . . . . . . . 10 (𝑛 = 𝑖 → ((𝑋‘(𝐿𝑛)) · 𝐴) = ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴))
6657, 61, 65, 36fvmptf 6209 . . . . . . . . 9 ((𝑖 ∈ ℕ ∧ ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) ∈ ℂ) → (𝐹𝑖) = ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴))
6756, 42, 66syl2anc 691 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) = ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴))
6855, 67sylan2 490 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝐽)) → (𝐹𝑖) = ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴))
693, 5syl6eleq 2698 . . . . . . . 8 (𝜑𝐼 ∈ (ℤ‘1))
70 uztrn 11580 . . . . . . . 8 ((𝐽 ∈ (ℤ𝐼) ∧ 𝐼 ∈ (ℤ‘1)) → 𝐽 ∈ (ℤ‘1))
717, 69, 70syl2anc 691 . . . . . . 7 (𝜑𝐽 ∈ (ℤ‘1))
7255, 42sylan2 490 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝐽)) → ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) ∈ ℂ)
7368, 71, 72fsumser 14308 . . . . . 6 (𝜑 → Σ𝑖 ∈ (1...𝐽)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = (seq1( + , 𝐹)‘𝐽))
7454, 73eqtr3d 2646 . . . . 5 (𝜑 → (Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) + Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) = (seq1( + , 𝐹)‘𝐽))
75 elfznn 12241 . . . . . . 7 (𝑖 ∈ (1...𝐼) → 𝑖 ∈ ℕ)
7675, 67sylan2 490 . . . . . 6 ((𝜑𝑖 ∈ (1...𝐼)) → (𝐹𝑖) = ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴))
7775, 42sylan2 490 . . . . . 6 ((𝜑𝑖 ∈ (1...𝐼)) → ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) ∈ ℂ)
7876, 69, 77fsumser 14308 . . . . 5 (𝜑 → Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = (seq1( + , 𝐹)‘𝐼))
7974, 78oveq12d 6567 . . . 4 (𝜑 → ((Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) + Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) − Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) = ((seq1( + , 𝐹)‘𝐽) − (seq1( + , 𝐹)‘𝐼)))
80 fzfid 12634 . . . . . 6 (𝜑 → (1...𝐼) ∈ Fin)
8180, 77fsumcl 14311 . . . . 5 (𝜑 → Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) ∈ ℂ)
82 fzofi 12635 . . . . . . 7 ((𝐼 + 1)..^(𝐽 + 1)) ∈ Fin
8382a1i 11 . . . . . 6 (𝜑 → ((𝐼 + 1)..^(𝐽 + 1)) ∈ Fin)
84 ssun2 3739 . . . . . . . . 9 ((𝐼 + 1)..^(𝐽 + 1)) ⊆ ((1..^(𝐼 + 1)) ∪ ((𝐼 + 1)..^(𝐽 + 1)))
8584, 13syl5sseqr 3617 . . . . . . . 8 (𝜑 → ((𝐼 + 1)..^(𝐽 + 1)) ⊆ (1..^(𝐽 + 1)))
8685sselda 3568 . . . . . . 7 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → 𝑖 ∈ (1..^(𝐽 + 1)))
8786, 43syldan 486 . . . . . 6 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) ∈ ℂ)
8883, 87fsumcl 14311 . . . . 5 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) ∈ ℂ)
8981, 88pncan2d 10273 . . . 4 (𝜑 → ((Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) + Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) − Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) = Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴))
9079, 89eqtr3d 2646 . . 3 (𝜑 → ((seq1( + , 𝐹)‘𝐽) − (seq1( + , 𝐹)‘𝐼)) = Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴))
9190fveq2d 6107 . 2 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝐽) − (seq1( + , 𝐹)‘𝐼))) = (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)))
9288abscld 14023 . . 3 (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) ∈ ℝ)
93 2re 10967 . . . . . 6 2 ∈ ℝ
9493a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
95 dchrisum.9 . . . . 5 (𝜑𝑅 ∈ ℝ)
9694, 95remulcld 9949 . . . 4 (𝜑 → (2 · 𝑅) ∈ ℝ)
9740ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑖 ∈ ℕ 𝑖 / 𝑛𝐴 ∈ ℝ)
98 csbeq1 3502 . . . . . . 7 (𝑖 = (𝐼 + 1) → 𝑖 / 𝑛𝐴 = (𝐼 + 1) / 𝑛𝐴)
9998eleq1d 2672 . . . . . 6 (𝑖 = (𝐼 + 1) → (𝑖 / 𝑛𝐴 ∈ ℝ ↔ (𝐼 + 1) / 𝑛𝐴 ∈ ℝ))
10099rspcv 3278 . . . . 5 ((𝐼 + 1) ∈ ℕ → (∀𝑖 ∈ ℕ 𝑖 / 𝑛𝐴 ∈ ℝ → (𝐼 + 1) / 𝑛𝐴 ∈ ℝ))
1014, 97, 100sylc 63 . . . 4 (𝜑(𝐼 + 1) / 𝑛𝐴 ∈ ℝ)
10296, 101remulcld 9949 . . 3 (𝜑 → ((2 · 𝑅) · (𝐼 + 1) / 𝑛𝐴) ∈ ℝ)
103 dchrisumlem2.1 . . . . 5 (𝜑𝑈 ∈ ℝ+)
10433ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ)
105 nfcsb1v 3515 . . . . . . 7 𝑛𝑈 / 𝑛𝐴
106105nfel1 2765 . . . . . 6 𝑛𝑈 / 𝑛𝐴 ∈ ℝ
107 csbeq1a 3508 . . . . . . 7 (𝑛 = 𝑈𝐴 = 𝑈 / 𝑛𝐴)
108107eleq1d 2672 . . . . . 6 (𝑛 = 𝑈 → (𝐴 ∈ ℝ ↔ 𝑈 / 𝑛𝐴 ∈ ℝ))
109106, 108rspc 3276 . . . . 5 (𝑈 ∈ ℝ+ → (∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → 𝑈 / 𝑛𝐴 ∈ ℝ))
110103, 104, 109sylc 63 . . . 4 (𝜑𝑈 / 𝑛𝐴 ∈ ℝ)
11196, 110remulcld 9949 . . 3 (𝜑 → ((2 · 𝑅) · 𝑈 / 𝑛𝐴) ∈ ℝ)
11271, 5syl6eleqr 2699 . . . . . . . . . . . 12 (𝜑𝐽 ∈ ℕ)
113112peano2nnd 10914 . . . . . . . . . . 11 (𝜑 → (𝐽 + 1) ∈ ℕ)
114113nnrpd 11746 . . . . . . . . . 10 (𝜑 → (𝐽 + 1) ∈ ℝ+)
11519, 21, 28, 18, 20, 29, 22, 30, 31, 32, 33, 34, 35, 36dchrisumlema 24977 . . . . . . . . . . 11 (𝜑 → (((𝐽 + 1) ∈ ℝ+(𝐽 + 1) / 𝑛𝐴 ∈ ℝ) ∧ ((𝐽 + 1) ∈ (𝑀[,)+∞) → 0 ≤ (𝐽 + 1) / 𝑛𝐴)))
116115simpld 474 . . . . . . . . . 10 (𝜑 → ((𝐽 + 1) ∈ ℝ+(𝐽 + 1) / 𝑛𝐴 ∈ ℝ))
117114, 116mpd 15 . . . . . . . . 9 (𝜑(𝐽 + 1) / 𝑛𝐴 ∈ ℝ)
118117recnd 9947 . . . . . . . 8 (𝜑(𝐽 + 1) / 𝑛𝐴 ∈ ℂ)
119 fzofi 12635 . . . . . . . . . 10 (0..^(𝐽 + 1)) ∈ Fin
120119a1i 11 . . . . . . . . 9 (𝜑 → (0..^(𝐽 + 1)) ∈ Fin)
121 elfzoelz 12339 . . . . . . . . . 10 (𝑛 ∈ (0..^(𝐽 + 1)) → 𝑛 ∈ ℤ)
12222adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℤ) → 𝑋𝐷)
123 simpr 476 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
12418, 19, 20, 21, 122, 123dchrzrhcl 24770 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℤ) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
125121, 124sylan2 490 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^(𝐽 + 1))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
126120, 125fsumcl 14311 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)) ∈ ℂ)
127118, 126mulcld 9939 . . . . . . 7 (𝜑 → ((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) ∈ ℂ)
128101recnd 9947 . . . . . . . 8 (𝜑(𝐼 + 1) / 𝑛𝐴 ∈ ℂ)
129 fzofi 12635 . . . . . . . . . 10 (0..^(𝐼 + 1)) ∈ Fin
130129a1i 11 . . . . . . . . 9 (𝜑 → (0..^(𝐼 + 1)) ∈ Fin)
131 elfzoelz 12339 . . . . . . . . . 10 (𝑛 ∈ (0..^(𝐼 + 1)) → 𝑛 ∈ ℤ)
132131, 124sylan2 490 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^(𝐼 + 1))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
133130, 132fsumcl 14311 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)) ∈ ℂ)
134128, 133mulcld 9939 . . . . . . 7 (𝜑 → ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))) ∈ ℂ)
135127, 134subcld 10271 . . . . . 6 (𝜑 → (((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) ∈ ℂ)
136135abscld 14023 . . . . 5 (𝜑 → (abs‘(((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) ∈ ℝ)
13786, 17syl 17 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → 𝑖 ∈ ℕ)
138 peano2nn 10909 . . . . . . . . . . . . 13 (𝑖 ∈ ℕ → (𝑖 + 1) ∈ ℕ)
139138nnrpd 11746 . . . . . . . . . . . 12 (𝑖 ∈ ℕ → (𝑖 + 1) ∈ ℝ+)
140 nfcsb1v 3515 . . . . . . . . . . . . . . 15 𝑛(𝑖 + 1) / 𝑛𝐴
141140nfel1 2765 . . . . . . . . . . . . . 14 𝑛(𝑖 + 1) / 𝑛𝐴 ∈ ℝ
142 csbeq1a 3508 . . . . . . . . . . . . . . 15 (𝑛 = (𝑖 + 1) → 𝐴 = (𝑖 + 1) / 𝑛𝐴)
143142eleq1d 2672 . . . . . . . . . . . . . 14 (𝑛 = (𝑖 + 1) → (𝐴 ∈ ℝ ↔ (𝑖 + 1) / 𝑛𝐴 ∈ ℝ))
144141, 143rspc 3276 . . . . . . . . . . . . 13 ((𝑖 + 1) ∈ ℝ+ → (∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → (𝑖 + 1) / 𝑛𝐴 ∈ ℝ))
145144impcom 445 . . . . . . . . . . . 12 ((∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ ∧ (𝑖 + 1) ∈ ℝ+) → (𝑖 + 1) / 𝑛𝐴 ∈ ℝ)
146104, 139, 145syl2an 493 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → (𝑖 + 1) / 𝑛𝐴 ∈ ℝ)
147146, 40resubcld 10337 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → ((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) ∈ ℝ)
148147recnd 9947 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → ((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) ∈ ℂ)
149 fzofi 12635 . . . . . . . . . . . 12 (0..^(𝑖 + 1)) ∈ Fin
150149a1i 11 . . . . . . . . . . 11 (𝜑 → (0..^(𝑖 + 1)) ∈ Fin)
151 elfzoelz 12339 . . . . . . . . . . . 12 (𝑛 ∈ (0..^(𝑖 + 1)) → 𝑛 ∈ ℤ)
152151, 124sylan2 490 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^(𝑖 + 1))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
153150, 152fsumcl 14311 . . . . . . . . . 10 (𝜑 → Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) ∈ ℂ)
154153adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) ∈ ℂ)
155148, 154mulcld 9939 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))) ∈ ℂ)
156137, 155syldan 486 . . . . . . 7 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))) ∈ ℂ)
15783, 156fsumcl 14311 . . . . . 6 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))) ∈ ℂ)
158157abscld 14023 . . . . 5 (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) ∈ ℝ)
159136, 158readdcld 9948 . . . 4 (𝜑 → ((abs‘(((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) + (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))))) ∈ ℝ)
16026, 41mulcomd 9940 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = (𝑖 / 𝑛𝐴 · (𝑋‘(𝐿𝑖))))
161 nnnn0 11176 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℕ → 𝑖 ∈ ℕ0)
162161adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ0)
163 nn0uz 11598 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
164162, 163syl6eleq 2698 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ (ℤ‘0))
165 elfzelz 12213 . . . . . . . . . . . . . . 15 (𝑛 ∈ (0...𝑖) → 𝑛 ∈ ℤ)
166124adantlr 747 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
167165, 166sylan2 490 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℕ) ∧ 𝑛 ∈ (0...𝑖)) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
168164, 167, 63fzosump1 14325 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) = (Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)) + (𝑋‘(𝐿𝑖))))
169168oveq1d 6564 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → (Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))) = ((Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)) + (𝑋‘(𝐿𝑖))) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))))
170 fzofi 12635 . . . . . . . . . . . . . . 15 (0..^𝑖) ∈ Fin
171170a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ℕ) → (0..^𝑖) ∈ Fin)
172 elfzoelz 12339 . . . . . . . . . . . . . . 15 (𝑛 ∈ (0..^𝑖) → 𝑛 ∈ ℤ)
173172, 166sylan2 490 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℕ) ∧ 𝑛 ∈ (0..^𝑖)) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
174171, 173fsumcl 14311 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)) ∈ ℂ)
175174, 26pncan2d 10273 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → ((Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)) + (𝑋‘(𝐿𝑖))) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))) = (𝑋‘(𝐿𝑖)))
176169, 175eqtr2d 2645 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → (𝑋‘(𝐿𝑖)) = (Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))))
177176oveq2d 6565 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → (𝑖 / 𝑛𝐴 · (𝑋‘(𝐿𝑖))) = (𝑖 / 𝑛𝐴 · (Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))))
178160, 177eqtrd 2644 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = (𝑖 / 𝑛𝐴 · (Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))))
179137, 178syldan 486 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = (𝑖 / 𝑛𝐴 · (Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))))
180179sumeq2dv 14281 . . . . . . 7 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(𝑖 / 𝑛𝐴 · (Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))))
181 csbeq1 3502 . . . . . . . . 9 (𝑘 = 𝑖𝑘 / 𝑛𝐴 = 𝑖 / 𝑛𝐴)
182 oveq2 6557 . . . . . . . . . 10 (𝑘 = 𝑖 → (0..^𝑘) = (0..^𝑖))
183182sumeq1d 14279 . . . . . . . . 9 (𝑘 = 𝑖 → Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))
184181, 183jca 553 . . . . . . . 8 (𝑘 = 𝑖 → (𝑘 / 𝑛𝐴 = 𝑖 / 𝑛𝐴 ∧ Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))))
185 csbeq1 3502 . . . . . . . . 9 (𝑘 = (𝑖 + 1) → 𝑘 / 𝑛𝐴 = (𝑖 + 1) / 𝑛𝐴)
186 oveq2 6557 . . . . . . . . . 10 (𝑘 = (𝑖 + 1) → (0..^𝑘) = (0..^(𝑖 + 1)))
187186sumeq1d 14279 . . . . . . . . 9 (𝑘 = (𝑖 + 1) → Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))
188185, 187jca 553 . . . . . . . 8 (𝑘 = (𝑖 + 1) → (𝑘 / 𝑛𝐴 = (𝑖 + 1) / 𝑛𝐴 ∧ Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))))
189 csbeq1 3502 . . . . . . . . 9 (𝑘 = (𝐼 + 1) → 𝑘 / 𝑛𝐴 = (𝐼 + 1) / 𝑛𝐴)
190 oveq2 6557 . . . . . . . . . 10 (𝑘 = (𝐼 + 1) → (0..^𝑘) = (0..^(𝐼 + 1)))
191190sumeq1d 14279 . . . . . . . . 9 (𝑘 = (𝐼 + 1) → Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))
192189, 191jca 553 . . . . . . . 8 (𝑘 = (𝐼 + 1) → (𝑘 / 𝑛𝐴 = (𝐼 + 1) / 𝑛𝐴 ∧ Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))
193 csbeq1 3502 . . . . . . . . 9 (𝑘 = (𝐽 + 1) → 𝑘 / 𝑛𝐴 = (𝐽 + 1) / 𝑛𝐴)
194 oveq2 6557 . . . . . . . . . 10 (𝑘 = (𝐽 + 1) → (0..^𝑘) = (0..^(𝐽 + 1)))
195194sumeq1d 14279 . . . . . . . . 9 (𝑘 = (𝐽 + 1) → Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))
196193, 195jca 553 . . . . . . . 8 (𝑘 = (𝐽 + 1) → (𝑘 / 𝑛𝐴 = (𝐽 + 1) / 𝑛𝐴 ∧ Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))))
197 elfzuz 12209 . . . . . . . . . 10 (𝑘 ∈ ((𝐼 + 1)...(𝐽 + 1)) → 𝑘 ∈ (ℤ‘(𝐼 + 1)))
198 eluznn 11634 . . . . . . . . . 10 (((𝐼 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝐼 + 1))) → 𝑘 ∈ ℕ)
1994, 197, 198syl2an 493 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 + 1))) → 𝑘 ∈ ℕ)
20041ralrimiva 2949 . . . . . . . . . 10 (𝜑 → ∀𝑖 ∈ ℕ 𝑖 / 𝑛𝐴 ∈ ℂ)
201 csbeq1 3502 . . . . . . . . . . . 12 (𝑖 = 𝑘𝑖 / 𝑛𝐴 = 𝑘 / 𝑛𝐴)
202201eleq1d 2672 . . . . . . . . . . 11 (𝑖 = 𝑘 → (𝑖 / 𝑛𝐴 ∈ ℂ ↔ 𝑘 / 𝑛𝐴 ∈ ℂ))
203202rspccva 3281 . . . . . . . . . 10 ((∀𝑖 ∈ ℕ 𝑖 / 𝑛𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → 𝑘 / 𝑛𝐴 ∈ ℂ)
204200, 203sylan 487 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝑘 / 𝑛𝐴 ∈ ℂ)
205199, 204syldan 486 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 + 1))) → 𝑘 / 𝑛𝐴 ∈ ℂ)
206 fzofi 12635 . . . . . . . . . . 11 (0..^𝑘) ∈ Fin
207206a1i 11 . . . . . . . . . 10 (𝜑 → (0..^𝑘) ∈ Fin)
208 elfzoelz 12339 . . . . . . . . . . 11 (𝑛 ∈ (0..^𝑘) → 𝑛 ∈ ℤ)
209208, 124sylan2 490 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑘)) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
210207, 209fsumcl 14311 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) ∈ ℂ)
211210adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 + 1))) → Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) ∈ ℂ)
212184, 188, 192, 196, 9, 205, 211fsumparts 14379 . . . . . . 7 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(𝑖 / 𝑛𝐴 · (Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))) = ((((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) − Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))))
213180, 212eqtrd 2644 . . . . . 6 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = ((((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) − Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))))
214213fveq2d 6107 . . . . 5 (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) = (abs‘((((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) − Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))))))
215135, 157abs2dif2d 14045 . . . . 5 (𝜑 → (abs‘((((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) − Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))))) ≤ ((abs‘(((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) + (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))))))
216214, 215eqbrtrd 4605 . . . 4 (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) ≤ ((abs‘(((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) + (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))))))
217117, 101readdcld 9948 . . . . . . 7 (𝜑 → ((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) ∈ ℝ)
218217, 95remulcld 9949 . . . . . 6 (𝜑 → (((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) · 𝑅) ∈ ℝ)
219181, 185, 189, 193, 9, 205telfsumo 14375 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) = ((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴))
220137, 40syldan 486 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → 𝑖 / 𝑛𝐴 ∈ ℝ)
221137, 146syldan 486 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (𝑖 + 1) / 𝑛𝐴 ∈ ℝ)
222220, 221resubcld 10337 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) ∈ ℝ)
22383, 222fsumrecl 14312 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) ∈ ℝ)
224219, 223eqeltrrd 2689 . . . . . . 7 (𝜑 → ((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴) ∈ ℝ)
225224, 95remulcld 9949 . . . . . 6 (𝜑 → (((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴) · 𝑅) ∈ ℝ)
226127abscld 14023 . . . . . . . 8 (𝜑 → (abs‘((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))) ∈ ℝ)
227134abscld 14023 . . . . . . . 8 (𝜑 → (abs‘((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) ∈ ℝ)
228226, 227readdcld 9948 . . . . . . 7 (𝜑 → ((abs‘((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))) + (abs‘((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) ∈ ℝ)
229127, 134abs2dif2d 14045 . . . . . . 7 (𝜑 → (abs‘(((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) ≤ ((abs‘((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))) + (abs‘((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))))
230117, 95remulcld 9949 . . . . . . . . 9 (𝜑 → ((𝐽 + 1) / 𝑛𝐴 · 𝑅) ∈ ℝ)
231101, 95remulcld 9949 . . . . . . . . 9 (𝜑 → ((𝐼 + 1) / 𝑛𝐴 · 𝑅) ∈ ℝ)
232118, 126absmuld 14041 . . . . . . . . . . 11 (𝜑 → (abs‘((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))) = ((abs‘(𝐽 + 1) / 𝑛𝐴) · (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))))
233 eluzelre 11574 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (ℤ𝑀) → 𝑖 ∈ ℝ)
234233adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℝ)
235 eluzle 11576 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (ℤ𝑀) → 𝑀𝑖)
236235adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑀𝑖)
23732nnred 10912 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℝ)
238237adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
239 elicopnf 12140 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℝ → (𝑖 ∈ (𝑀[,)+∞) ↔ (𝑖 ∈ ℝ ∧ 𝑀𝑖)))
240238, 239syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑖 ∈ (𝑀[,)+∞) ↔ (𝑖 ∈ ℝ ∧ 𝑀𝑖)))
241234, 236, 240mpbir2and 959 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ (𝑀[,)+∞))
242241ex 449 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑖 ∈ (ℤ𝑀) → 𝑖 ∈ (𝑀[,)+∞)))
243242ssrdv 3574 . . . . . . . . . . . . . . 15 (𝜑 → (ℤ𝑀) ⊆ (𝑀[,)+∞))
24432nnzd 11357 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℤ)
24549peano2zd 11361 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐼 + 1) ∈ ℤ)
246103rpred 11748 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 ∈ ℝ)
2474nnred 10912 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐼 + 1) ∈ ℝ)
248 dchrisumlem2.2 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀𝑈)
249 dchrisumlem2.3 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 ≤ (𝐼 + 1))
250237, 246, 247, 248, 249letrd 10073 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ≤ (𝐼 + 1))
251 eluz2 11569 . . . . . . . . . . . . . . . . 17 ((𝐼 + 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝐼 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝐼 + 1)))
252244, 245, 250, 251syl3anbrc 1239 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐼 + 1) ∈ (ℤ𝑀))
253 uztrn 11580 . . . . . . . . . . . . . . . 16 (((𝐽 + 1) ∈ (ℤ‘(𝐼 + 1)) ∧ (𝐼 + 1) ∈ (ℤ𝑀)) → (𝐽 + 1) ∈ (ℤ𝑀))
2549, 252, 253syl2anc 691 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽 + 1) ∈ (ℤ𝑀))
255243, 254sseldd 3569 . . . . . . . . . . . . . 14 (𝜑 → (𝐽 + 1) ∈ (𝑀[,)+∞))
256115simprd 478 . . . . . . . . . . . . . 14 (𝜑 → ((𝐽 + 1) ∈ (𝑀[,)+∞) → 0 ≤ (𝐽 + 1) / 𝑛𝐴))
257255, 256mpd 15 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (𝐽 + 1) / 𝑛𝐴)
258117, 257absidd 14009 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐽 + 1) / 𝑛𝐴) = (𝐽 + 1) / 𝑛𝐴)
259258oveq1d 6564 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐽 + 1) / 𝑛𝐴) · (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))) = ((𝐽 + 1) / 𝑛𝐴 · (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))))
260232, 259eqtrd 2644 . . . . . . . . . 10 (𝜑 → (abs‘((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))) = ((𝐽 + 1) / 𝑛𝐴 · (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))))
261126abscld 14023 . . . . . . . . . . 11 (𝜑 → (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) ∈ ℝ)
262113nnnn0d 11228 . . . . . . . . . . . 12 (𝜑 → (𝐽 + 1) ∈ ℕ0)
263 dchrisum.10 . . . . . . . . . . . . 13 (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛))) ≤ 𝑅)
26419, 21, 28, 18, 20, 29, 22, 30, 31, 32, 33, 34, 35, 36, 95, 263dchrisumlem1 24978 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐽 + 1) ∈ ℕ0) → (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) ≤ 𝑅)
265262, 264mpdan 699 . . . . . . . . . . 11 (𝜑 → (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) ≤ 𝑅)
266261, 95, 117, 257, 265lemul2ad 10843 . . . . . . . . . 10 (𝜑 → ((𝐽 + 1) / 𝑛𝐴 · (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))) ≤ ((𝐽 + 1) / 𝑛𝐴 · 𝑅))
267260, 266eqbrtrd 4605 . . . . . . . . 9 (𝜑 → (abs‘((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))) ≤ ((𝐽 + 1) / 𝑛𝐴 · 𝑅))
268128, 133absmuld 14041 . . . . . . . . . . 11 (𝜑 → (abs‘((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) = ((abs‘(𝐼 + 1) / 𝑛𝐴) · (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))))
269243, 252sseldd 3569 . . . . . . . . . . . . . 14 (𝜑 → (𝐼 + 1) ∈ (𝑀[,)+∞))
27019, 21, 28, 18, 20, 29, 22, 30, 31, 32, 33, 34, 35, 36dchrisumlema 24977 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐼 + 1) ∈ ℝ+(𝐼 + 1) / 𝑛𝐴 ∈ ℝ) ∧ ((𝐼 + 1) ∈ (𝑀[,)+∞) → 0 ≤ (𝐼 + 1) / 𝑛𝐴)))
271270simprd 478 . . . . . . . . . . . . . 14 (𝜑 → ((𝐼 + 1) ∈ (𝑀[,)+∞) → 0 ≤ (𝐼 + 1) / 𝑛𝐴))
272269, 271mpd 15 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (𝐼 + 1) / 𝑛𝐴)
273101, 272absidd 14009 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐼 + 1) / 𝑛𝐴) = (𝐼 + 1) / 𝑛𝐴)
274273oveq1d 6564 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐼 + 1) / 𝑛𝐴) · (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) = ((𝐼 + 1) / 𝑛𝐴 · (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))))
275268, 274eqtrd 2644 . . . . . . . . . 10 (𝜑 → (abs‘((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) = ((𝐼 + 1) / 𝑛𝐴 · (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))))
276133abscld 14023 . . . . . . . . . . 11 (𝜑 → (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))) ∈ ℝ)
2774nnnn0d 11228 . . . . . . . . . . . 12 (𝜑 → (𝐼 + 1) ∈ ℕ0)
27819, 21, 28, 18, 20, 29, 22, 30, 31, 32, 33, 34, 35, 36, 95, 263dchrisumlem1 24978 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐼 + 1) ∈ ℕ0) → (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))) ≤ 𝑅)
279277, 278mpdan 699 . . . . . . . . . . 11 (𝜑 → (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))) ≤ 𝑅)
280276, 95, 101, 272, 279lemul2ad 10843 . . . . . . . . . 10 (𝜑 → ((𝐼 + 1) / 𝑛𝐴 · (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) ≤ ((𝐼 + 1) / 𝑛𝐴 · 𝑅))
281275, 280eqbrtrd 4605 . . . . . . . . 9 (𝜑 → (abs‘((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) ≤ ((𝐼 + 1) / 𝑛𝐴 · 𝑅))
282226, 227, 230, 231, 267, 281le2addd 10525 . . . . . . . 8 (𝜑 → ((abs‘((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))) + (abs‘((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) ≤ (((𝐽 + 1) / 𝑛𝐴 · 𝑅) + ((𝐼 + 1) / 𝑛𝐴 · 𝑅)))
28395recnd 9947 . . . . . . . . 9 (𝜑𝑅 ∈ ℂ)
284118, 128, 283adddird 9944 . . . . . . . 8 (𝜑 → (((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) · 𝑅) = (((𝐽 + 1) / 𝑛𝐴 · 𝑅) + ((𝐼 + 1) / 𝑛𝐴 · 𝑅)))
285282, 284breqtrrd 4611 . . . . . . 7 (𝜑 → ((abs‘((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))) + (abs‘((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) ≤ (((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) · 𝑅))
286136, 228, 218, 229, 285letrd 10073 . . . . . 6 (𝜑 → (abs‘(((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) ≤ (((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) · 𝑅))
287156abscld 14023 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (abs‘(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) ∈ ℝ)
28883, 287fsumrecl 14312 . . . . . . 7 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(abs‘(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) ∈ ℝ)
28983, 156fsumabs 14374 . . . . . . 7 (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) ≤ Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(abs‘(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))))
29095adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → 𝑅 ∈ ℝ)
291222, 290remulcld 9949 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → ((𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · 𝑅) ∈ ℝ)
292137, 148syldan 486 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → ((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) ∈ ℂ)
293153adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) ∈ ℂ)
294292, 293absmuld 14041 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (abs‘(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) = ((abs‘((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴)) · (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))))
295 elfzouz 12343 . . . . . . . . . . . . . . 15 (𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1)) → 𝑖 ∈ (ℤ‘(𝐼 + 1)))
296 uztrn 11580 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (ℤ‘(𝐼 + 1)) ∧ (𝐼 + 1) ∈ (ℤ𝑀)) → 𝑖 ∈ (ℤ𝑀))
297295, 252, 296syl2anr 494 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → 𝑖 ∈ (ℤ𝑀))
298 eluznn 11634 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℕ)
29932, 298sylan 487 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℕ)
300299, 139syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑖 + 1) ∈ ℝ+)
301299nnrpd 11746 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℝ+)
302343expia 1259 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+)) → ((𝑀𝑛𝑛𝑥) → 𝐵𝐴))
303302ralrimivva 2954 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴))
304303adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → ∀𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴))
305 nfcv 2751 . . . . . . . . . . . . . . . . . 18 𝑛+
306 nfv 1830 . . . . . . . . . . . . . . . . . . 19 𝑛(𝑀𝑖𝑖𝑥)
307 nfcv 2751 . . . . . . . . . . . . . . . . . . . 20 𝑛𝐵
308 nfcv 2751 . . . . . . . . . . . . . . . . . . . 20 𝑛
309307, 308, 60nfbr 4629 . . . . . . . . . . . . . . . . . . 19 𝑛 𝐵𝑖 / 𝑛𝐴
310306, 309nfim 1813 . . . . . . . . . . . . . . . . . 18 𝑛((𝑀𝑖𝑖𝑥) → 𝐵𝑖 / 𝑛𝐴)
311305, 310nfral 2929 . . . . . . . . . . . . . . . . 17 𝑛𝑥 ∈ ℝ+ ((𝑀𝑖𝑖𝑥) → 𝐵𝑖 / 𝑛𝐴)
312 breq2 4587 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑖 → (𝑀𝑛𝑀𝑖))
313 breq1 4586 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑖 → (𝑛𝑥𝑖𝑥))
314312, 313anbi12d 743 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑖 → ((𝑀𝑛𝑛𝑥) ↔ (𝑀𝑖𝑖𝑥)))
31564breq2d 4595 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑖 → (𝐵𝐴𝐵𝑖 / 𝑛𝐴))
316314, 315imbi12d 333 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 → (((𝑀𝑛𝑛𝑥) → 𝐵𝐴) ↔ ((𝑀𝑖𝑖𝑥) → 𝐵𝑖 / 𝑛𝐴)))
317316ralbidv 2969 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → (∀𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴) ↔ ∀𝑥 ∈ ℝ+ ((𝑀𝑖𝑖𝑥) → 𝐵𝑖 / 𝑛𝐴)))
318311, 317rspc 3276 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℝ+ → (∀𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴) → ∀𝑥 ∈ ℝ+ ((𝑀𝑖𝑖𝑥) → 𝐵𝑖 / 𝑛𝐴)))
319301, 304, 318sylc 63 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → ∀𝑥 ∈ ℝ+ ((𝑀𝑖𝑖𝑥) → 𝐵𝑖 / 𝑛𝐴))
320234lep1d 10834 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ≤ (𝑖 + 1))
321236, 320jca 553 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑀𝑖𝑖 ≤ (𝑖 + 1)))
322 breq2 4587 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑖 + 1) → (𝑖𝑥𝑖 ≤ (𝑖 + 1)))
323322anbi2d 736 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑖 + 1) → ((𝑀𝑖𝑖𝑥) ↔ (𝑀𝑖𝑖 ≤ (𝑖 + 1))))
324 eqvisset 3184 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑖 + 1) → (𝑖 + 1) ∈ V)
325 eqtr3 2631 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = (𝑖 + 1) ∧ 𝑛 = (𝑖 + 1)) → 𝑥 = 𝑛)
32631equcoms 1934 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑛𝐴 = 𝐵)
327325, 326syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = (𝑖 + 1) ∧ 𝑛 = (𝑖 + 1)) → 𝐴 = 𝐵)
328324, 327csbied 3526 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑖 + 1) → (𝑖 + 1) / 𝑛𝐴 = 𝐵)
329328eqcomd 2616 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑖 + 1) → 𝐵 = (𝑖 + 1) / 𝑛𝐴)
330329breq1d 4593 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑖 + 1) → (𝐵𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴))
331323, 330imbi12d 333 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑖 + 1) → (((𝑀𝑖𝑖𝑥) → 𝐵𝑖 / 𝑛𝐴) ↔ ((𝑀𝑖𝑖 ≤ (𝑖 + 1)) → (𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴)))
332331rspcv 3278 . . . . . . . . . . . . . . 15 ((𝑖 + 1) ∈ ℝ+ → (∀𝑥 ∈ ℝ+ ((𝑀𝑖𝑖𝑥) → 𝐵𝑖 / 𝑛𝐴) → ((𝑀𝑖𝑖 ≤ (𝑖 + 1)) → (𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴)))
333300, 319, 321, 332syl3c 64 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴)
334297, 333syldan 486 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴)
335221, 220, 334abssuble0d 14019 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (abs‘((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴)) = (𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴))
336335oveq1d 6564 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → ((abs‘((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴)) · (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) = ((𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))))
337294, 336eqtrd 2644 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (abs‘(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) = ((𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))))
338293abscld 14023 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))) ∈ ℝ)
339220, 221subge0d 10496 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (0 ≤ (𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) ↔ (𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴))
340334, 339mpbird 246 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → 0 ≤ (𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴))
341137peano2nnd 10914 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (𝑖 + 1) ∈ ℕ)
342341nnnn0d 11228 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (𝑖 + 1) ∈ ℕ0)
34319, 21, 28, 18, 20, 29, 22, 30, 31, 32, 33, 34, 35, 36, 95, 263dchrisumlem1 24978 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 + 1) ∈ ℕ0) → (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))) ≤ 𝑅)
344342, 343syldan 486 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))) ≤ 𝑅)
345338, 290, 222, 340, 344lemul2ad 10843 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → ((𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) ≤ ((𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · 𝑅))
346337, 345eqbrtrd 4605 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (abs‘(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) ≤ ((𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · 𝑅))
34783, 287, 291, 346fsumle 14372 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(abs‘(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) ≤ Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · 𝑅))
348222recnd 9947 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) ∈ ℂ)
34983, 283, 348fsummulc1 14359 . . . . . . . . 9 (𝜑 → (Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · 𝑅) = Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · 𝑅))
350219oveq1d 6564 . . . . . . . . 9 (𝜑 → (Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · 𝑅) = (((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴) · 𝑅))
351349, 350eqtr3d 2646 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · 𝑅) = (((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴) · 𝑅))
352347, 351breqtrd 4609 . . . . . . 7 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(abs‘(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) ≤ (((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴) · 𝑅))
353158, 288, 225, 289, 352letrd 10073 . . . . . 6 (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) ≤ (((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴) · 𝑅))
354136, 158, 218, 225, 286, 353le2addd 10525 . . . . 5 (𝜑 → ((abs‘(((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) + (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))))) ≤ ((((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) · 𝑅) + (((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴) · 𝑅)))
3551282timesd 11152 . . . . . . . 8 (𝜑 → (2 · (𝐼 + 1) / 𝑛𝐴) = ((𝐼 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴))
356128, 118, 128ppncand 10311 . . . . . . . 8 (𝜑 → (((𝐼 + 1) / 𝑛𝐴 + (𝐽 + 1) / 𝑛𝐴) + ((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴)) = ((𝐼 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴))
357128, 118addcomd 10117 . . . . . . . . 9 (𝜑 → ((𝐼 + 1) / 𝑛𝐴 + (𝐽 + 1) / 𝑛𝐴) = ((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴))
358357oveq1d 6564 . . . . . . . 8 (𝜑 → (((𝐼 + 1) / 𝑛𝐴 + (𝐽 + 1) / 𝑛𝐴) + ((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴)) = (((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) + ((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴)))
359355, 356, 3583eqtr2d 2650 . . . . . . 7 (𝜑 → (2 · (𝐼 + 1) / 𝑛𝐴) = (((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) + ((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴)))
360359oveq1d 6564 . . . . . 6 (𝜑 → ((2 · (𝐼 + 1) / 𝑛𝐴) · 𝑅) = ((((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) + ((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴)) · 𝑅))
361 2cnd 10970 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
362361, 128, 283mul32d 10125 . . . . . 6 (𝜑 → ((2 · (𝐼 + 1) / 𝑛𝐴) · 𝑅) = ((2 · 𝑅) · (𝐼 + 1) / 𝑛𝐴))
363217recnd 9947 . . . . . . 7 (𝜑 → ((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) ∈ ℂ)
364224recnd 9947 . . . . . . 7 (𝜑 → ((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴) ∈ ℂ)
365363, 364, 283adddird 9944 . . . . . 6 (𝜑 → ((((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) + ((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴)) · 𝑅) = ((((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) · 𝑅) + (((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴) · 𝑅)))
366360, 362, 3653eqtr3d 2652 . . . . 5 (𝜑 → ((2 · 𝑅) · (𝐼 + 1) / 𝑛𝐴) = ((((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) · 𝑅) + (((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴) · 𝑅)))
367354, 366breqtrrd 4611 . . . 4 (𝜑 → ((abs‘(((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) + (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))))) ≤ ((2 · 𝑅) · (𝐼 + 1) / 𝑛𝐴))
36892, 159, 102, 216, 367letrd 10073 . . 3 (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) ≤ ((2 · 𝑅) · (𝐼 + 1) / 𝑛𝐴))
369 2nn0 11186 . . . . . 6 2 ∈ ℕ0
370 nn0ge0 11195 . . . . . 6 (2 ∈ ℕ0 → 0 ≤ 2)
371369, 370mp1i 13 . . . . 5 (𝜑 → 0 ≤ 2)
372 0red 9920 . . . . . 6 (𝜑 → 0 ∈ ℝ)
373126absge0d 14031 . . . . . 6 (𝜑 → 0 ≤ (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))))
374372, 261, 95, 373, 265letrd 10073 . . . . 5 (𝜑 → 0 ≤ 𝑅)
37594, 95, 371, 374mulge0d 10483 . . . 4 (𝜑 → 0 ≤ (2 · 𝑅))
3764nnrpd 11746 . . . . 5 (𝜑 → (𝐼 + 1) ∈ ℝ+)
377 nfv 1830 . . . . . . . . 9 𝑛(𝑀𝑈𝑈𝑥)
378307, 308, 105nfbr 4629 . . . . . . . . 9 𝑛 𝐵𝑈 / 𝑛𝐴
379377, 378nfim 1813 . . . . . . . 8 𝑛((𝑀𝑈𝑈𝑥) → 𝐵𝑈 / 𝑛𝐴)
380305, 379nfral 2929 . . . . . . 7 𝑛𝑥 ∈ ℝ+ ((𝑀𝑈𝑈𝑥) → 𝐵𝑈 / 𝑛𝐴)
381 breq2 4587 . . . . . . . . . 10 (𝑛 = 𝑈 → (𝑀𝑛𝑀𝑈))
382 breq1 4586 . . . . . . . . . 10 (𝑛 = 𝑈 → (𝑛𝑥𝑈𝑥))
383381, 382anbi12d 743 . . . . . . . . 9 (𝑛 = 𝑈 → ((𝑀𝑛𝑛𝑥) ↔ (𝑀𝑈𝑈𝑥)))
384107breq2d 4595 . . . . . . . . 9 (𝑛 = 𝑈 → (𝐵𝐴𝐵𝑈 / 𝑛𝐴))
385383, 384imbi12d 333 . . . . . . . 8 (𝑛 = 𝑈 → (((𝑀𝑛𝑛𝑥) → 𝐵𝐴) ↔ ((𝑀𝑈𝑈𝑥) → 𝐵𝑈 / 𝑛𝐴)))
386385ralbidv 2969 . . . . . . 7 (𝑛 = 𝑈 → (∀𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴) ↔ ∀𝑥 ∈ ℝ+ ((𝑀𝑈𝑈𝑥) → 𝐵𝑈 / 𝑛𝐴)))
387380, 386rspc 3276 . . . . . 6 (𝑈 ∈ ℝ+ → (∀𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴) → ∀𝑥 ∈ ℝ+ ((𝑀𝑈𝑈𝑥) → 𝐵𝑈 / 𝑛𝐴)))
388103, 303, 387sylc 63 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+ ((𝑀𝑈𝑈𝑥) → 𝐵𝑈 / 𝑛𝐴))
389248, 249jca 553 . . . . 5 (𝜑 → (𝑀𝑈𝑈 ≤ (𝐼 + 1)))
390 breq2 4587 . . . . . . . 8 (𝑥 = (𝐼 + 1) → (𝑈𝑥𝑈 ≤ (𝐼 + 1)))
391390anbi2d 736 . . . . . . 7 (𝑥 = (𝐼 + 1) → ((𝑀𝑈𝑈𝑥) ↔ (𝑀𝑈𝑈 ≤ (𝐼 + 1))))
392 eqvisset 3184 . . . . . . . . . 10 (𝑥 = (𝐼 + 1) → (𝐼 + 1) ∈ V)
393 eqtr3 2631 . . . . . . . . . . 11 ((𝑥 = (𝐼 + 1) ∧ 𝑛 = (𝐼 + 1)) → 𝑥 = 𝑛)
394393, 326syl 17 . . . . . . . . . 10 ((𝑥 = (𝐼 + 1) ∧ 𝑛 = (𝐼 + 1)) → 𝐴 = 𝐵)
395392, 394csbied 3526 . . . . . . . . 9 (𝑥 = (𝐼 + 1) → (𝐼 + 1) / 𝑛𝐴 = 𝐵)
396395eqcomd 2616 . . . . . . . 8 (𝑥 = (𝐼 + 1) → 𝐵 = (𝐼 + 1) / 𝑛𝐴)
397396breq1d 4593 . . . . . . 7 (𝑥 = (𝐼 + 1) → (𝐵𝑈 / 𝑛𝐴(𝐼 + 1) / 𝑛𝐴𝑈 / 𝑛𝐴))
398391, 397imbi12d 333 . . . . . 6 (𝑥 = (𝐼 + 1) → (((𝑀𝑈𝑈𝑥) → 𝐵𝑈 / 𝑛𝐴) ↔ ((𝑀𝑈𝑈 ≤ (𝐼 + 1)) → (𝐼 + 1) / 𝑛𝐴𝑈 / 𝑛𝐴)))
399398rspcv 3278 . . . . 5 ((𝐼 + 1) ∈ ℝ+ → (∀𝑥 ∈ ℝ+ ((𝑀𝑈𝑈𝑥) → 𝐵𝑈 / 𝑛𝐴) → ((𝑀𝑈𝑈 ≤ (𝐼 + 1)) → (𝐼 + 1) / 𝑛𝐴𝑈 / 𝑛𝐴)))
400376, 388, 389, 399syl3c 64 . . . 4 (𝜑(𝐼 + 1) / 𝑛𝐴𝑈 / 𝑛𝐴)
401101, 110, 96, 375, 400lemul2ad 10843 . . 3 (𝜑 → ((2 · 𝑅) · (𝐼 + 1) / 𝑛𝐴) ≤ ((2 · 𝑅) · 𝑈 / 𝑛𝐴))
40292, 102, 111, 368, 401letrd 10073 . 2 (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) ≤ ((2 · 𝑅) · 𝑈 / 𝑛𝐴))
40391, 402eqbrtrd 4605 1 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝐽) − (seq1( + , 𝐹)‘𝐼))) ≤ ((2 · 𝑅) · 𝑈 / 𝑛𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  Vcvv 3173  csb 3499  cun 3538  cin 3539  c0 3874   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950  cle 9954  cmin 10145  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  +crp 11708  [,)cico 12048  ...cfz 12197  ..^cfzo 12334  seqcseq 12663  abscabs 13822  𝑟 crli 14064  Σcsu 14264  Basecbs 15695  0gc0g 15923  ℤRHomczrh 19667  ℤ/nczn 19670  DChrcdchr 24757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-dvds 14822  df-gcd 15055  df-phi 15309  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-imas 15991  df-qus 15992  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-nsg 17415  df-eqg 17416  df-ghm 17481  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-rnghom 18538  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rsp 18996  df-2idl 19053  df-cnfld 19568  df-zring 19638  df-zrh 19671  df-zn 19674  df-dchr 24758
This theorem is referenced by:  dchrisumlem3  24980
  Copyright terms: Public domain W3C validator