Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fibp1 Structured version   Visualization version   GIF version

Theorem fibp1 29790
 Description: Value of the Fibonacci sequence at higher indices. (Contributed by Thierry Arnoux, 25-Apr-2019.)
Assertion
Ref Expression
fibp1 (𝑁 ∈ ℕ → (Fibci‘(𝑁 + 1)) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))

Proof of Theorem fibp1
Dummy variables 𝑤 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fib 29786 . . . 4 Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1)))))
21fveq1i 6104 . . 3 (Fibci‘(𝑁 + 1)) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1)))))‘(𝑁 + 1))
32a1i 11 . 2 (𝑁 ∈ ℕ → (Fibci‘(𝑁 + 1)) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1)))))‘(𝑁 + 1)))
4 nn0ex 11175 . . . 4 0 ∈ V
54a1i 11 . . 3 (𝑁 ∈ ℕ → ℕ0 ∈ V)
6 0nn0 11184 . . . . 5 0 ∈ ℕ0
76a1i 11 . . . 4 (𝑁 ∈ ℕ → 0 ∈ ℕ0)
8 1nn0 11185 . . . . 5 1 ∈ ℕ0
98a1i 11 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
107, 9s2cld 13466 . . 3 (𝑁 ∈ ℕ → ⟨“01”⟩ ∈ Word ℕ0)
11 eqid 2610 . . 3 (Word ℕ0 ∩ (# “ (ℤ‘(#‘⟨“01”⟩)))) = (Word ℕ0 ∩ (# “ (ℤ‘(#‘⟨“01”⟩))))
12 fiblem 29787 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1)))):(Word ℕ0 ∩ (# “ (ℤ‘(#‘⟨“01”⟩))))⟶ℕ0
1312a1i 11 . . 3 (𝑁 ∈ ℕ → (𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1)))):(Word ℕ0 ∩ (# “ (ℤ‘(#‘⟨“01”⟩))))⟶ℕ0)
14 eluzp1p1 11589 . . . . 5 (𝑁 ∈ (ℤ‘1) → (𝑁 + 1) ∈ (ℤ‘(1 + 1)))
15 nnuz 11599 . . . . 5 ℕ = (ℤ‘1)
1614, 15eleq2s 2706 . . . 4 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ‘(1 + 1)))
17 s2len 13484 . . . . . 6 (#‘⟨“01”⟩) = 2
18 1p1e2 11011 . . . . . 6 (1 + 1) = 2
1917, 18eqtr4i 2635 . . . . 5 (#‘⟨“01”⟩) = (1 + 1)
2019fveq2i 6106 . . . 4 (ℤ‘(#‘⟨“01”⟩)) = (ℤ‘(1 + 1))
2116, 20syl6eleqr 2699 . . 3 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ‘(#‘⟨“01”⟩)))
225, 10, 11, 13, 21sseqp1 29784 . 2 (𝑁 ∈ ℕ → ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1)))))‘(𝑁 + 1)) = ((𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1))))‘((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))))
23 id 22 . . . . . . 7 (𝑤 = 𝑡𝑤 = 𝑡)
24 fveq2 6103 . . . . . . . 8 (𝑤 = 𝑡 → (#‘𝑤) = (#‘𝑡))
2524oveq1d 6564 . . . . . . 7 (𝑤 = 𝑡 → ((#‘𝑤) − 2) = ((#‘𝑡) − 2))
2623, 25fveq12d 6109 . . . . . 6 (𝑤 = 𝑡 → (𝑤‘((#‘𝑤) − 2)) = (𝑡‘((#‘𝑡) − 2)))
2724oveq1d 6564 . . . . . . 7 (𝑤 = 𝑡 → ((#‘𝑤) − 1) = ((#‘𝑡) − 1))
2823, 27fveq12d 6109 . . . . . 6 (𝑤 = 𝑡 → (𝑤‘((#‘𝑤) − 1)) = (𝑡‘((#‘𝑡) − 1)))
2926, 28oveq12d 6567 . . . . 5 (𝑤 = 𝑡 → ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1))) = ((𝑡‘((#‘𝑡) − 2)) + (𝑡‘((#‘𝑡) − 1))))
3029cbvmptv 4678 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1)))) = (𝑡 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑡‘((#‘𝑡) − 2)) + (𝑡‘((#‘𝑡) − 1))))
3130a1i 11 . . 3 (𝑁 ∈ ℕ → (𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1)))) = (𝑡 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑡‘((#‘𝑡) − 2)) + (𝑡‘((#‘𝑡) − 1)))))
32 simpr 476 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))))
331a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1))))))
3433reseq1d 5316 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → (Fibci ↾ (0..^(𝑁 + 1))) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))))
3532, 34eqtr4d 2647 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → 𝑡 = (Fibci ↾ (0..^(𝑁 + 1))))
36 simpr 476 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑡 = (Fibci ↾ (0..^(𝑁 + 1))))
3736fveq2d 6107 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (#‘𝑡) = (#‘(Fibci ↾ (0..^(𝑁 + 1)))))
385, 10, 11, 13sseqf 29781 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1))))):ℕ0⟶ℕ0)
391a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1))))))
4039feq1d 5943 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (Fibci:ℕ0⟶ℕ0 ↔ (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1))))):ℕ0⟶ℕ0))
4138, 40mpbird 246 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → Fibci:ℕ0⟶ℕ0)
42 nnnn0 11176 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
4342, 9nn0addcld 11232 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
445, 41, 43subiwrdlen 29775 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (#‘(Fibci ↾ (0..^(𝑁 + 1)))) = (𝑁 + 1))
4544adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (#‘(Fibci ↾ (0..^(𝑁 + 1)))) = (𝑁 + 1))
4637, 45eqtrd 2644 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (#‘𝑡) = (𝑁 + 1))
4746oveq1d 6564 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((#‘𝑡) − 2) = ((𝑁 + 1) − 2))
48 nncn 10905 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
49 1cnd 9935 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 1 ∈ ℂ)
50 2cnd 10970 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℂ)
5148, 49, 50addsubassd 10291 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 + 1) − 2) = (𝑁 + (1 − 2)))
5248, 50, 49subsub2d 10300 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − (2 − 1)) = (𝑁 + (1 − 2)))
53 2m1e1 11012 . . . . . . . . . . . 12 (2 − 1) = 1
5453oveq2i 6560 . . . . . . . . . . 11 (𝑁 − (2 − 1)) = (𝑁 − 1)
5554a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − (2 − 1)) = (𝑁 − 1))
5651, 52, 553eqtr2d 2650 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 + 1) − 2) = (𝑁 − 1))
5756adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((𝑁 + 1) − 2) = (𝑁 − 1))
5847, 57eqtrd 2644 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((#‘𝑡) − 2) = (𝑁 − 1))
5958fveq2d 6107 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((#‘𝑡) − 2)) = (𝑡‘(𝑁 − 1)))
6036fveq1d 6105 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘(𝑁 − 1)) = ((Fibci ↾ (0..^(𝑁 + 1)))‘(𝑁 − 1)))
61 nnm1nn0 11211 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
62 peano2nn 10909 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
63 nnre 10904 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
64 2re 10967 . . . . . . . . . . . . 13 2 ∈ ℝ
6564a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 2 ∈ ℝ)
6663, 65readdcld 9948 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℝ)
67 1red 9934 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 1 ∈ ℝ)
68 2rp 11713 . . . . . . . . . . . . 13 2 ∈ ℝ+
6968a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
7063, 69ltaddrpd 11781 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 2))
7163, 66, 67, 70ltsub1dd 10518 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 1) < ((𝑁 + 2) − 1))
7248, 50, 49addsubassd 10291 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 + 2) − 1) = (𝑁 + (2 − 1)))
7353oveq2i 6560 . . . . . . . . . . 11 (𝑁 + (2 − 1)) = (𝑁 + 1)
7472, 73syl6eq 2660 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 + 2) − 1) = (𝑁 + 1))
7571, 74breqtrd 4609 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) < (𝑁 + 1))
76 elfzo0 12376 . . . . . . . . 9 ((𝑁 − 1) ∈ (0..^(𝑁 + 1)) ↔ ((𝑁 − 1) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ ∧ (𝑁 − 1) < (𝑁 + 1)))
7761, 62, 75, 76syl3anbrc 1239 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^(𝑁 + 1)))
7877adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑁 − 1) ∈ (0..^(𝑁 + 1)))
79 fvres 6117 . . . . . . 7 ((𝑁 − 1) ∈ (0..^(𝑁 + 1)) → ((Fibci ↾ (0..^(𝑁 + 1)))‘(𝑁 − 1)) = (Fibci‘(𝑁 − 1)))
8078, 79syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((Fibci ↾ (0..^(𝑁 + 1)))‘(𝑁 − 1)) = (Fibci‘(𝑁 − 1)))
8159, 60, 803eqtrd 2648 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((#‘𝑡) − 2)) = (Fibci‘(𝑁 − 1)))
8246oveq1d 6564 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((#‘𝑡) − 1) = ((𝑁 + 1) − 1))
83 simpl 472 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑁 ∈ ℕ)
8483nncnd 10913 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑁 ∈ ℂ)
85 1cnd 9935 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 1 ∈ ℂ)
8684, 85pncand 10272 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((𝑁 + 1) − 1) = 𝑁)
8782, 86eqtrd 2644 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((#‘𝑡) − 1) = 𝑁)
8887fveq2d 6107 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((#‘𝑡) − 1)) = (𝑡𝑁))
8936fveq1d 6105 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡𝑁) = ((Fibci ↾ (0..^(𝑁 + 1)))‘𝑁))
90 nn0fz0 12306 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
9142, 90sylib 207 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ (0...𝑁))
92 nnz 11276 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
93 fzval3 12404 . . . . . . . . . 10 (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1)))
9492, 93syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (0...𝑁) = (0..^(𝑁 + 1)))
9591, 94eleqtrd 2690 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ (0..^(𝑁 + 1)))
9695adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑁 ∈ (0..^(𝑁 + 1)))
97 fvres 6117 . . . . . . 7 (𝑁 ∈ (0..^(𝑁 + 1)) → ((Fibci ↾ (0..^(𝑁 + 1)))‘𝑁) = (Fibci‘𝑁))
9896, 97syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((Fibci ↾ (0..^(𝑁 + 1)))‘𝑁) = (Fibci‘𝑁))
9988, 89, 983eqtrd 2648 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((#‘𝑡) − 1)) = (Fibci‘𝑁))
10081, 99oveq12d 6567 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((𝑡‘((#‘𝑡) − 2)) + (𝑡‘((#‘𝑡) − 1))) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))
10135, 100syldan 486 . . 3 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → ((𝑡‘((#‘𝑡) − 2)) + (𝑡‘((#‘𝑡) − 1))) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))
10239reseq1d 5316 . . . 4 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))))
1035, 41, 43subiwrd 29774 . . . . 5 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) ∈ Word ℕ0)
104 ovex 6577 . . . . . . . . 9 (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1))))) ∈ V
1051, 104eqeltri 2684 . . . . . . . 8 Fibci ∈ V
106105resex 5363 . . . . . . 7 (Fibci ↾ (0..^(𝑁 + 1))) ∈ V
107106a1i 11 . . . . . 6 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) ∈ V)
10818fveq2i 6106 . . . . . . . 8 (ℤ‘(1 + 1)) = (ℤ‘2)
10916, 108syl6eleq 2698 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ‘2))
11044, 109eqeltrd 2688 . . . . . 6 (𝑁 ∈ ℕ → (#‘(Fibci ↾ (0..^(𝑁 + 1)))) ∈ (ℤ‘2))
111 hashf 12987 . . . . . . 7 #:V⟶(ℕ0 ∪ {+∞})
112 ffn 5958 . . . . . . 7 (#:V⟶(ℕ0 ∪ {+∞}) → # Fn V)
113 elpreima 6245 . . . . . . 7 (# Fn V → ((Fibci ↾ (0..^(𝑁 + 1))) ∈ (# “ (ℤ‘2)) ↔ ((Fibci ↾ (0..^(𝑁 + 1))) ∈ V ∧ (#‘(Fibci ↾ (0..^(𝑁 + 1)))) ∈ (ℤ‘2))))
114111, 112, 113mp2b 10 . . . . . 6 ((Fibci ↾ (0..^(𝑁 + 1))) ∈ (# “ (ℤ‘2)) ↔ ((Fibci ↾ (0..^(𝑁 + 1))) ∈ V ∧ (#‘(Fibci ↾ (0..^(𝑁 + 1)))) ∈ (ℤ‘2)))
115107, 110, 114sylanbrc 695 . . . . 5 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) ∈ (# “ (ℤ‘2)))
116103, 115elind 3760 . . . 4 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))))
117102, 116eqeltrrd 2689 . . 3 (𝑁 ∈ ℕ → ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))) ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))))
118 ovex 6577 . . . 4 ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)) ∈ V
119118a1i 11 . . 3 (𝑁 ∈ ℕ → ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)) ∈ V)
12031, 101, 117, 119fvmptd 6197 . 2 (𝑁 ∈ ℕ → ((𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1))))‘((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))
1213, 22, 1203eqtrd 2648 1 (𝑁 ∈ ℕ → (Fibci‘(𝑁 + 1)) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ∪ cun 3538   ∩ cin 3539  {csn 4125   class class class wbr 4583   ↦ cmpt 4643  ◡ccnv 5037   ↾ cres 5040   “ cima 5041   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818  +∞cpnf 9950   < clt 9953   − cmin 10145  ℕcn 10897  2c2 10947  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  ℝ+crp 11708  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146  ⟨“cs2 13437  seqstrcsseq 29772  Fibcicfib 29785 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-s2 13444  df-sseq 29773  df-fib 29786 This theorem is referenced by:  fib2  29791  fib3  29792  fib4  29793  fib5  29794  fib6  29795
 Copyright terms: Public domain W3C validator