Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sseqf Structured version   Visualization version   GIF version

Theorem sseqf 29781
Description: A strong recursive sequence is a function over the nonnegative integers. (Contributed by Thierry Arnoux, 23-Apr-2019.)
Hypotheses
Ref Expression
sseqval.1 (𝜑𝑆 ∈ V)
sseqval.2 (𝜑𝑀 ∈ Word 𝑆)
sseqval.3 𝑊 = (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀))))
sseqval.4 (𝜑𝐹:𝑊𝑆)
Assertion
Ref Expression
sseqf (𝜑 → (𝑀seqstr𝐹):ℕ0𝑆)

Proof of Theorem sseqf
Dummy variables 𝑥 𝑦 𝑎 𝑏 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseqval.2 . . . 4 (𝜑𝑀 ∈ Word 𝑆)
2 wrdf 13165 . . . 4 (𝑀 ∈ Word 𝑆𝑀:(0..^(#‘𝑀))⟶𝑆)
31, 2syl 17 . . 3 (𝜑𝑀:(0..^(#‘𝑀))⟶𝑆)
4 vex 3176 . . . . . . . . 9 𝑤 ∈ V
54a1i 11 . . . . . . . 8 ((𝜑𝑤 ∈ (𝑊 ∖ {∅})) → 𝑤 ∈ V)
6 fvex 6113 . . . . . . . . 9 (𝑥‘((#‘𝑥) − 1)) ∈ V
7 df-lsw 13155 . . . . . . . . 9 lastS = (𝑥 ∈ V ↦ (𝑥‘((#‘𝑥) − 1)))
86, 7dmmpti 5936 . . . . . . . 8 dom lastS = V
95, 8syl6eleqr 2699 . . . . . . 7 ((𝜑𝑤 ∈ (𝑊 ∖ {∅})) → 𝑤 ∈ dom lastS )
10 eldifsn 4260 . . . . . . . . 9 (𝑤 ∈ (𝑊 ∖ {∅}) ↔ (𝑤𝑊𝑤 ≠ ∅))
11 sseqval.3 . . . . . . . . . . . 12 𝑊 = (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀))))
12 inss1 3795 . . . . . . . . . . . 12 (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀)))) ⊆ Word 𝑆
1311, 12eqsstri 3598 . . . . . . . . . . 11 𝑊 ⊆ Word 𝑆
1413sseli 3564 . . . . . . . . . 10 (𝑤𝑊𝑤 ∈ Word 𝑆)
15 lswcl 13208 . . . . . . . . . 10 ((𝑤 ∈ Word 𝑆𝑤 ≠ ∅) → ( lastS ‘𝑤) ∈ 𝑆)
1614, 15sylan 487 . . . . . . . . 9 ((𝑤𝑊𝑤 ≠ ∅) → ( lastS ‘𝑤) ∈ 𝑆)
1710, 16sylbi 206 . . . . . . . 8 (𝑤 ∈ (𝑊 ∖ {∅}) → ( lastS ‘𝑤) ∈ 𝑆)
1817adantl 481 . . . . . . 7 ((𝜑𝑤 ∈ (𝑊 ∖ {∅})) → ( lastS ‘𝑤) ∈ 𝑆)
199, 18jca 553 . . . . . 6 ((𝜑𝑤 ∈ (𝑊 ∖ {∅})) → (𝑤 ∈ dom lastS ∧ ( lastS ‘𝑤) ∈ 𝑆))
2019ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑤 ∈ (𝑊 ∖ {∅})(𝑤 ∈ dom lastS ∧ ( lastS ‘𝑤) ∈ 𝑆))
216, 7fnmpti 5935 . . . . . 6 lastS Fn V
22 fnfun 5902 . . . . . 6 ( lastS Fn V → Fun lastS )
23 ffvresb 6301 . . . . . 6 (Fun lastS → (( lastS ↾ (𝑊 ∖ {∅})):(𝑊 ∖ {∅})⟶𝑆 ↔ ∀𝑤 ∈ (𝑊 ∖ {∅})(𝑤 ∈ dom lastS ∧ ( lastS ‘𝑤) ∈ 𝑆)))
2421, 22, 23mp2b 10 . . . . 5 (( lastS ↾ (𝑊 ∖ {∅})):(𝑊 ∖ {∅})⟶𝑆 ↔ ∀𝑤 ∈ (𝑊 ∖ {∅})(𝑤 ∈ dom lastS ∧ ( lastS ‘𝑤) ∈ 𝑆))
2520, 24sylibr 223 . . . 4 (𝜑 → ( lastS ↾ (𝑊 ∖ {∅})):(𝑊 ∖ {∅})⟶𝑆)
26 eqid 2610 . . . . 5 (ℤ‘(#‘𝑀)) = (ℤ‘(#‘𝑀))
27 lencl 13179 . . . . . . 7 (𝑀 ∈ Word 𝑆 → (#‘𝑀) ∈ ℕ0)
2827nn0zd 11356 . . . . . 6 (𝑀 ∈ Word 𝑆 → (#‘𝑀) ∈ ℤ)
291, 28syl 17 . . . . 5 (𝜑 → (#‘𝑀) ∈ ℤ)
30 ovex 6577 . . . . . . 7 (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V
31 simpr 476 . . . . . . . . 9 ((𝜑𝑎 ∈ (ℤ‘(#‘𝑀))) → 𝑎 ∈ (ℤ‘(#‘𝑀)))
321, 27syl 17 . . . . . . . . . . 11 (𝜑 → (#‘𝑀) ∈ ℕ0)
3332adantr 480 . . . . . . . . . 10 ((𝜑𝑎 ∈ (ℤ‘(#‘𝑀))) → (#‘𝑀) ∈ ℕ0)
34 elnn0uz 11601 . . . . . . . . . 10 ((#‘𝑀) ∈ ℕ0 ↔ (#‘𝑀) ∈ (ℤ‘0))
3533, 34sylib 207 . . . . . . . . 9 ((𝜑𝑎 ∈ (ℤ‘(#‘𝑀))) → (#‘𝑀) ∈ (ℤ‘0))
36 uztrn 11580 . . . . . . . . 9 ((𝑎 ∈ (ℤ‘(#‘𝑀)) ∧ (#‘𝑀) ∈ (ℤ‘0)) → 𝑎 ∈ (ℤ‘0))
3731, 35, 36syl2anc 691 . . . . . . . 8 ((𝜑𝑎 ∈ (ℤ‘(#‘𝑀))) → 𝑎 ∈ (ℤ‘0))
38 nn0uz 11598 . . . . . . . 8 0 = (ℤ‘0)
3937, 38syl6eleqr 2699 . . . . . . 7 ((𝜑𝑎 ∈ (ℤ‘(#‘𝑀))) → 𝑎 ∈ ℕ0)
40 fvconst2g 6372 . . . . . . 7 (((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V ∧ 𝑎 ∈ ℕ0) → ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘𝑎) = (𝑀 ++ ⟨“(𝐹𝑀)”⟩))
4130, 39, 40sylancr 694 . . . . . 6 ((𝜑𝑎 ∈ (ℤ‘(#‘𝑀))) → ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘𝑎) = (𝑀 ++ ⟨“(𝐹𝑀)”⟩))
42 sseqval.4 . . . . . . . . . . . . 13 (𝜑𝐹:𝑊𝑆)
43 sseqval.1 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ V)
4443, 1, 11, 42sseqmw 29780 . . . . . . . . . . . . 13 (𝜑𝑀𝑊)
4542, 44ffvelrnd 6268 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑀) ∈ 𝑆)
4645s1cld 13236 . . . . . . . . . . 11 (𝜑 → ⟨“(𝐹𝑀)”⟩ ∈ Word 𝑆)
47 ccatcl 13212 . . . . . . . . . . 11 ((𝑀 ∈ Word 𝑆 ∧ ⟨“(𝐹𝑀)”⟩ ∈ Word 𝑆) → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ Word 𝑆)
481, 46, 47syl2anc 691 . . . . . . . . . 10 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ Word 𝑆)
4930a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V)
50 ccatws1len 13251 . . . . . . . . . . . . 13 ((𝑀 ∈ Word 𝑆 ∧ (𝐹𝑀) ∈ 𝑆) → (#‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) = ((#‘𝑀) + 1))
511, 45, 50syl2anc 691 . . . . . . . . . . . 12 (𝜑 → (#‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) = ((#‘𝑀) + 1))
52 uzid 11578 . . . . . . . . . . . . 13 ((#‘𝑀) ∈ ℤ → (#‘𝑀) ∈ (ℤ‘(#‘𝑀)))
53 peano2uz 11617 . . . . . . . . . . . . 13 ((#‘𝑀) ∈ (ℤ‘(#‘𝑀)) → ((#‘𝑀) + 1) ∈ (ℤ‘(#‘𝑀)))
5429, 52, 533syl 18 . . . . . . . . . . . 12 (𝜑 → ((#‘𝑀) + 1) ∈ (ℤ‘(#‘𝑀)))
5551, 54eqeltrd 2688 . . . . . . . . . . 11 (𝜑 → (#‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) ∈ (ℤ‘(#‘𝑀)))
56 hashf 12987 . . . . . . . . . . . 12 #:V⟶(ℕ0 ∪ {+∞})
57 ffn 5958 . . . . . . . . . . . 12 (#:V⟶(ℕ0 ∪ {+∞}) → # Fn V)
58 elpreima 6245 . . . . . . . . . . . 12 (# Fn V → ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (# “ (ℤ‘(#‘𝑀))) ↔ ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V ∧ (#‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) ∈ (ℤ‘(#‘𝑀)))))
5956, 57, 58mp2b 10 . . . . . . . . . . 11 ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (# “ (ℤ‘(#‘𝑀))) ↔ ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V ∧ (#‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) ∈ (ℤ‘(#‘𝑀))))
6049, 55, 59sylanbrc 695 . . . . . . . . . 10 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (# “ (ℤ‘(#‘𝑀))))
6148, 60elind 3760 . . . . . . . . 9 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀)))))
6261, 11syl6eleqr 2699 . . . . . . . 8 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ 𝑊)
6362adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (ℤ‘(#‘𝑀))) → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ 𝑊)
641adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ (ℤ‘(#‘𝑀))) → 𝑀 ∈ Word 𝑆)
6542adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ (ℤ‘(#‘𝑀))) → 𝐹:𝑊𝑆)
6644adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ (ℤ‘(#‘𝑀))) → 𝑀𝑊)
6765, 66ffvelrnd 6268 . . . . . . . 8 ((𝜑𝑎 ∈ (ℤ‘(#‘𝑀))) → (𝐹𝑀) ∈ 𝑆)
68 ccatws1n0 13261 . . . . . . . 8 ((𝑀 ∈ Word 𝑆 ∧ (𝐹𝑀) ∈ 𝑆) → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ≠ ∅)
6964, 67, 68syl2anc 691 . . . . . . 7 ((𝜑𝑎 ∈ (ℤ‘(#‘𝑀))) → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ≠ ∅)
70 eldifsn 4260 . . . . . . 7 ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (𝑊 ∖ {∅}) ↔ ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ 𝑊 ∧ (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ≠ ∅))
7163, 69, 70sylanbrc 695 . . . . . 6 ((𝜑𝑎 ∈ (ℤ‘(#‘𝑀))) → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (𝑊 ∖ {∅}))
7241, 71eqeltrd 2688 . . . . 5 ((𝜑𝑎 ∈ (ℤ‘(#‘𝑀))) → ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘𝑎) ∈ (𝑊 ∖ {∅}))
73 eqidd 2611 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)) = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)))
74 simprl 790 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → 𝑥 = 𝑎)
7574fveq2d 6107 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → (𝐹𝑥) = (𝐹𝑎))
7675s1eqd 13234 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → ⟨“(𝐹𝑥)”⟩ = ⟨“(𝐹𝑎)”⟩)
7774, 76oveq12d 6567 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → (𝑥 ++ ⟨“(𝐹𝑥)”⟩) = (𝑎 ++ ⟨“(𝐹𝑎)”⟩))
78 vex 3176 . . . . . . . 8 𝑎 ∈ V
7978a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ V)
80 vex 3176 . . . . . . . 8 𝑏 ∈ V
8180a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑏 ∈ V)
82 ovex 6577 . . . . . . . 8 (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ V
8382a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ V)
8473, 77, 79, 81, 83ovmpt2d 6686 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩))𝑏) = (𝑎 ++ ⟨“(𝐹𝑎)”⟩))
85 eldifi 3694 . . . . . . . . . . . 12 (𝑎 ∈ (𝑊 ∖ {∅}) → 𝑎𝑊)
8685ad2antrl 760 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎𝑊)
8713, 86sseldi 3566 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ Word 𝑆)
8842adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝐹:𝑊𝑆)
8988, 86ffvelrnd 6268 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝐹𝑎) ∈ 𝑆)
9089s1cld 13236 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → ⟨“(𝐹𝑎)”⟩ ∈ Word 𝑆)
91 ccatcl 13212 . . . . . . . . . 10 ((𝑎 ∈ Word 𝑆 ∧ ⟨“(𝐹𝑎)”⟩ ∈ Word 𝑆) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ Word 𝑆)
9287, 90, 91syl2anc 691 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ Word 𝑆)
93 ccatws1len 13251 . . . . . . . . . . . 12 ((𝑎 ∈ Word 𝑆 ∧ (𝐹𝑎) ∈ 𝑆) → (#‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) = ((#‘𝑎) + 1))
9487, 89, 93syl2anc 691 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (#‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) = ((#‘𝑎) + 1))
9586, 11syl6eleq 2698 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀)))))
96 elin 3758 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀)))) ↔ (𝑎 ∈ Word 𝑆𝑎 ∈ (# “ (ℤ‘(#‘𝑀)))))
9796simprbi 479 . . . . . . . . . . . . . . 15 (𝑎 ∈ (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀)))) → 𝑎 ∈ (# “ (ℤ‘(#‘𝑀))))
9895, 97syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ (# “ (ℤ‘(#‘𝑀))))
99 elpreima 6245 . . . . . . . . . . . . . . 15 (# Fn V → (𝑎 ∈ (# “ (ℤ‘(#‘𝑀))) ↔ (𝑎 ∈ V ∧ (#‘𝑎) ∈ (ℤ‘(#‘𝑀)))))
10056, 57, 99mp2b 10 . . . . . . . . . . . . . 14 (𝑎 ∈ (# “ (ℤ‘(#‘𝑀))) ↔ (𝑎 ∈ V ∧ (#‘𝑎) ∈ (ℤ‘(#‘𝑀))))
10198, 100sylib 207 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ∈ V ∧ (#‘𝑎) ∈ (ℤ‘(#‘𝑀))))
102101simprd 478 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (#‘𝑎) ∈ (ℤ‘(#‘𝑀)))
103 peano2uz 11617 . . . . . . . . . . . 12 ((#‘𝑎) ∈ (ℤ‘(#‘𝑀)) → ((#‘𝑎) + 1) ∈ (ℤ‘(#‘𝑀)))
104102, 103syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → ((#‘𝑎) + 1) ∈ (ℤ‘(#‘𝑀)))
10594, 104eqeltrd 2688 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (#‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) ∈ (ℤ‘(#‘𝑀)))
106 elpreima 6245 . . . . . . . . . . 11 (# Fn V → ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (# “ (ℤ‘(#‘𝑀))) ↔ ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ V ∧ (#‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) ∈ (ℤ‘(#‘𝑀)))))
10756, 57, 106mp2b 10 . . . . . . . . . 10 ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (# “ (ℤ‘(#‘𝑀))) ↔ ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ V ∧ (#‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) ∈ (ℤ‘(#‘𝑀))))
10883, 105, 107sylanbrc 695 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (# “ (ℤ‘(#‘𝑀))))
10992, 108elind 3760 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀)))))
110109, 11syl6eleqr 2699 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ 𝑊)
111 ccatws1n0 13261 . . . . . . . 8 ((𝑎 ∈ Word 𝑆 ∧ (𝐹𝑎) ∈ 𝑆) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ≠ ∅)
11287, 89, 111syl2anc 691 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ≠ ∅)
113 eldifsn 4260 . . . . . . 7 ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (𝑊 ∖ {∅}) ↔ ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ 𝑊 ∧ (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ≠ ∅))
114110, 112, 113sylanbrc 695 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (𝑊 ∖ {∅}))
11584, 114eqeltrd 2688 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩))𝑏) ∈ (𝑊 ∖ {∅}))
11626, 29, 72, 115seqf 12684 . . . 4 (𝜑 → seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})):(ℤ‘(#‘𝑀))⟶(𝑊 ∖ {∅}))
117 fco2 5972 . . . 4 ((( lastS ↾ (𝑊 ∖ {∅})):(𝑊 ∖ {∅})⟶𝑆 ∧ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})):(ℤ‘(#‘𝑀))⟶(𝑊 ∖ {∅})) → ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))):(ℤ‘(#‘𝑀))⟶𝑆)
11825, 116, 117syl2anc 691 . . 3 (𝜑 → ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))):(ℤ‘(#‘𝑀))⟶𝑆)
119 fzouzdisj 12373 . . . 4 ((0..^(#‘𝑀)) ∩ (ℤ‘(#‘𝑀))) = ∅
120119a1i 11 . . 3 (𝜑 → ((0..^(#‘𝑀)) ∩ (ℤ‘(#‘𝑀))) = ∅)
121 fun 5979 . . 3 (((𝑀:(0..^(#‘𝑀))⟶𝑆 ∧ ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))):(ℤ‘(#‘𝑀))⟶𝑆) ∧ ((0..^(#‘𝑀)) ∩ (ℤ‘(#‘𝑀))) = ∅) → (𝑀 ∪ ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))):((0..^(#‘𝑀)) ∪ (ℤ‘(#‘𝑀)))⟶(𝑆𝑆))
1223, 118, 120, 121syl21anc 1317 . 2 (𝜑 → (𝑀 ∪ ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))):((0..^(#‘𝑀)) ∪ (ℤ‘(#‘𝑀)))⟶(𝑆𝑆))
12343, 1, 11, 42sseqval 29777 . . 3 (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))
124 fzouzsplit 12372 . . . . . 6 ((#‘𝑀) ∈ (ℤ‘0) → (ℤ‘0) = ((0..^(#‘𝑀)) ∪ (ℤ‘(#‘𝑀))))
12534, 124sylbi 206 . . . . 5 ((#‘𝑀) ∈ ℕ0 → (ℤ‘0) = ((0..^(#‘𝑀)) ∪ (ℤ‘(#‘𝑀))))
1261, 27, 1253syl 18 . . . 4 (𝜑 → (ℤ‘0) = ((0..^(#‘𝑀)) ∪ (ℤ‘(#‘𝑀))))
12738, 126syl5eq 2656 . . 3 (𝜑 → ℕ0 = ((0..^(#‘𝑀)) ∪ (ℤ‘(#‘𝑀))))
128 unidm 3718 . . . . 5 (𝑆𝑆) = 𝑆
129128a1i 11 . . . 4 (𝜑 → (𝑆𝑆) = 𝑆)
130129eqcomd 2616 . . 3 (𝜑𝑆 = (𝑆𝑆))
131123, 127, 130feq123d 5947 . 2 (𝜑 → ((𝑀seqstr𝐹):ℕ0𝑆 ↔ (𝑀 ∪ ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))):((0..^(#‘𝑀)) ∪ (ℤ‘(#‘𝑀)))⟶(𝑆𝑆)))
132122, 131mpbird 246 1 (𝜑 → (𝑀seqstr𝐹):ℕ0𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cdif 3537  cun 3538  cin 3539  c0 3874  {csn 4125   × cxp 5036  ccnv 5037  dom cdm 5038  cres 5040  cima 5041  ccom 5042  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  0cc0 9815  1c1 9816   + caddc 9818  +∞cpnf 9950  cmin 10145  0cn0 11169  cz 11254  cuz 11563  ..^cfzo 12334  seqcseq 12663  #chash 12979  Word cword 13146   lastS clsw 13147   ++ cconcat 13148  ⟨“cs1 13149  seqstrcsseq 29772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-sseq 29773
This theorem is referenced by:  sseqp1  29784  fibp1  29790
  Copyright terms: Public domain W3C validator