Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sseqval Structured version   Visualization version   GIF version

Theorem sseqval 29777
Description: Value of the strong sequence builder function. The set 𝑊 represents here the words of length greater than or equal to the lenght of the initial sequence 𝑀. (Contributed by Thierry Arnoux, 21-Apr-2019.)
Hypotheses
Ref Expression
sseqval.1 (𝜑𝑆 ∈ V)
sseqval.2 (𝜑𝑀 ∈ Word 𝑆)
sseqval.3 𝑊 = (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀))))
sseqval.4 (𝜑𝐹:𝑊𝑆)
Assertion
Ref Expression
sseqval (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem sseqval
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sseq 29773 . . 3 seqstr = (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ ( lastS ∘ seq(#‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)})))))
21a1i 11 . 2 (𝜑 → seqstr = (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ ( lastS ∘ seq(#‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)}))))))
3 simprl 790 . . 3 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → 𝑚 = 𝑀)
43fveq2d 6107 . . . . 5 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (#‘𝑚) = (#‘𝑀))
5 simp1rr 1120 . . . . . . . . 9 (((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝑓 = 𝐹)
65fveq1d 6105 . . . . . . . 8 (((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑓𝑥) = (𝐹𝑥))
76s1eqd 13234 . . . . . . 7 (((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → ⟨“(𝑓𝑥)”⟩ = ⟨“(𝐹𝑥)”⟩)
87oveq2d 6565 . . . . . 6 (((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ++ ⟨“(𝑓𝑥)”⟩) = (𝑥 ++ ⟨“(𝐹𝑥)”⟩))
98mpt2eq3dva 6617 . . . . 5 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)) = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)))
10 simprr 792 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → 𝑓 = 𝐹)
1110, 3fveq12d 6109 . . . . . . . . 9 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (𝑓𝑚) = (𝐹𝑀))
1211s1eqd 13234 . . . . . . . 8 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → ⟨“(𝑓𝑚)”⟩ = ⟨“(𝐹𝑀)”⟩)
133, 12oveq12d 6567 . . . . . . 7 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (𝑚 ++ ⟨“(𝑓𝑚)”⟩) = (𝑀 ++ ⟨“(𝐹𝑀)”⟩))
1413sneqd 4137 . . . . . 6 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)} = {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})
1514xpeq2d 5063 . . . . 5 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)}) = (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))
164, 9, 15seqeq123d 12672 . . . 4 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → seq(#‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)})) = seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))
1716coeq2d 5206 . . 3 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → ( lastS ∘ seq(#‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)}))) = ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))))
183, 17uneq12d 3730 . 2 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (𝑚 ∪ ( lastS ∘ seq(#‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)})))) = (𝑀 ∪ ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))
19 sseqval.2 . . 3 (𝜑𝑀 ∈ Word 𝑆)
20 elex 3185 . . 3 (𝑀 ∈ Word 𝑆𝑀 ∈ V)
2119, 20syl 17 . 2 (𝜑𝑀 ∈ V)
22 sseqval.4 . . 3 (𝜑𝐹:𝑊𝑆)
23 sseqval.3 . . . 4 𝑊 = (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀))))
24 sseqval.1 . . . . 5 (𝜑𝑆 ∈ V)
25 wrdexg 13170 . . . . 5 (𝑆 ∈ V → Word 𝑆 ∈ V)
26 inex1g 4729 . . . . 5 (Word 𝑆 ∈ V → (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀)))) ∈ V)
2724, 25, 263syl 18 . . . 4 (𝜑 → (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀)))) ∈ V)
2823, 27syl5eqel 2692 . . 3 (𝜑𝑊 ∈ V)
29 fex 6394 . . 3 ((𝐹:𝑊𝑆𝑊 ∈ V) → 𝐹 ∈ V)
3022, 28, 29syl2anc 691 . 2 (𝜑𝐹 ∈ V)
31 df-lsw 13155 . . . . . 6 lastS = (𝑥 ∈ V ↦ (𝑥‘((#‘𝑥) − 1)))
3231funmpt2 5841 . . . . 5 Fun lastS
3332a1i 11 . . . 4 (𝜑 → Fun lastS )
34 seqex 12665 . . . . 5 seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ∈ V
3534a1i 11 . . . 4 (𝜑 → seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ∈ V)
36 cofunexg 7023 . . . 4 ((Fun lastS ∧ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ∈ V) → ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) ∈ V)
3733, 35, 36syl2anc 691 . . 3 (𝜑 → ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) ∈ V)
38 unexg 6857 . . 3 ((𝑀 ∈ V ∧ ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) ∈ V) → (𝑀 ∪ ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))) ∈ V)
3921, 37, 38syl2anc 691 . 2 (𝜑 → (𝑀 ∪ ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))) ∈ V)
402, 18, 21, 30, 39ovmpt2d 6686 1 (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  cun 3538  cin 3539  {csn 4125   × cxp 5036  ccnv 5037  cima 5041  ccom 5042  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  1c1 9816  cmin 10145  0cn0 11169  cuz 11563  seqcseq 12663  #chash 12979  Word cword 13146   lastS clsw 13147   ++ cconcat 13148  ⟨“cs1 13149  seqstrcsseq 29772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-map 7746  df-pm 7747  df-neg 10148  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-word 13154  df-lsw 13155  df-s1 13157  df-sseq 29773
This theorem is referenced by:  sseqfv1  29778  sseqfn  29779  sseqf  29781  sseqfv2  29783
  Copyright terms: Public domain W3C validator