Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bccolsum Structured version   Visualization version   GIF version

Theorem bccolsum 30878
Description: A column-sum rule for binomial coefficents. (Contributed by Scott Fenton, 24-Jun-2020.)
Assertion
Ref Expression
bccolsum ((𝑁 ∈ ℕ0𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1)))
Distinct variable groups:   𝑘,𝑁   𝐶,𝑘

Proof of Theorem bccolsum
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6557 . . . . . 6 (𝑚 = 0 → (0...𝑚) = (0...0))
21sumeq1d 14279 . . . . 5 (𝑚 = 0 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = Σ𝑘 ∈ (0...0)(𝑘C𝐶))
3 oveq1 6556 . . . . . . 7 (𝑚 = 0 → (𝑚 + 1) = (0 + 1))
4 0p1e1 11009 . . . . . . 7 (0 + 1) = 1
53, 4syl6eq 2660 . . . . . 6 (𝑚 = 0 → (𝑚 + 1) = 1)
65oveq1d 6564 . . . . 5 (𝑚 = 0 → ((𝑚 + 1)C(𝐶 + 1)) = (1C(𝐶 + 1)))
72, 6eqeq12d 2625 . . . 4 (𝑚 = 0 → (Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1)) ↔ Σ𝑘 ∈ (0...0)(𝑘C𝐶) = (1C(𝐶 + 1))))
87imbi2d 329 . . 3 (𝑚 = 0 → ((𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1))) ↔ (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...0)(𝑘C𝐶) = (1C(𝐶 + 1)))))
9 oveq2 6557 . . . . . 6 (𝑚 = 𝑛 → (0...𝑚) = (0...𝑛))
109sumeq1d 14279 . . . . 5 (𝑚 = 𝑛 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶))
11 oveq1 6556 . . . . . 6 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
1211oveq1d 6564 . . . . 5 (𝑚 = 𝑛 → ((𝑚 + 1)C(𝐶 + 1)) = ((𝑛 + 1)C(𝐶 + 1)))
1310, 12eqeq12d 2625 . . . 4 (𝑚 = 𝑛 → (Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1)) ↔ Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))))
1413imbi2d 329 . . 3 (𝑚 = 𝑛 → ((𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1))) ↔ (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1)))))
15 oveq2 6557 . . . . . 6 (𝑚 = (𝑛 + 1) → (0...𝑚) = (0...(𝑛 + 1)))
1615sumeq1d 14279 . . . . 5 (𝑚 = (𝑛 + 1) → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶))
17 oveq1 6556 . . . . . 6 (𝑚 = (𝑛 + 1) → (𝑚 + 1) = ((𝑛 + 1) + 1))
1817oveq1d 6564 . . . . 5 (𝑚 = (𝑛 + 1) → ((𝑚 + 1)C(𝐶 + 1)) = (((𝑛 + 1) + 1)C(𝐶 + 1)))
1916, 18eqeq12d 2625 . . . 4 (𝑚 = (𝑛 + 1) → (Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1)) ↔ Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (((𝑛 + 1) + 1)C(𝐶 + 1))))
2019imbi2d 329 . . 3 (𝑚 = (𝑛 + 1) → ((𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1))) ↔ (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (((𝑛 + 1) + 1)C(𝐶 + 1)))))
21 oveq2 6557 . . . . . 6 (𝑚 = 𝑁 → (0...𝑚) = (0...𝑁))
2221sumeq1d 14279 . . . . 5 (𝑚 = 𝑁 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶))
23 oveq1 6556 . . . . . 6 (𝑚 = 𝑁 → (𝑚 + 1) = (𝑁 + 1))
2423oveq1d 6564 . . . . 5 (𝑚 = 𝑁 → ((𝑚 + 1)C(𝐶 + 1)) = ((𝑁 + 1)C(𝐶 + 1)))
2522, 24eqeq12d 2625 . . . 4 (𝑚 = 𝑁 → (Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1)) ↔ Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1))))
2625imbi2d 329 . . 3 (𝑚 = 𝑁 → ((𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1))) ↔ (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1)))))
27 0z 11265 . . . . 5 0 ∈ ℤ
28 0nn0 11184 . . . . . . 7 0 ∈ ℕ0
29 nn0z 11277 . . . . . . 7 (𝐶 ∈ ℕ0𝐶 ∈ ℤ)
30 bccl 12971 . . . . . . 7 ((0 ∈ ℕ0𝐶 ∈ ℤ) → (0C𝐶) ∈ ℕ0)
3128, 29, 30sylancr 694 . . . . . 6 (𝐶 ∈ ℕ0 → (0C𝐶) ∈ ℕ0)
3231nn0cnd 11230 . . . . 5 (𝐶 ∈ ℕ0 → (0C𝐶) ∈ ℂ)
33 oveq1 6556 . . . . . 6 (𝑘 = 0 → (𝑘C𝐶) = (0C𝐶))
3433fsum1 14320 . . . . 5 ((0 ∈ ℤ ∧ (0C𝐶) ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝑘C𝐶) = (0C𝐶))
3527, 32, 34sylancr 694 . . . 4 (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...0)(𝑘C𝐶) = (0C𝐶))
36 elnn0 11171 . . . . 5 (𝐶 ∈ ℕ0 ↔ (𝐶 ∈ ℕ ∨ 𝐶 = 0))
37 1red 9934 . . . . . . . . . . 11 (𝐶 ∈ ℕ → 1 ∈ ℝ)
38 nnrp 11718 . . . . . . . . . . 11 (𝐶 ∈ ℕ → 𝐶 ∈ ℝ+)
3937, 38ltaddrp2d 11782 . . . . . . . . . 10 (𝐶 ∈ ℕ → 1 < (𝐶 + 1))
40 peano2nn 10909 . . . . . . . . . . . 12 (𝐶 ∈ ℕ → (𝐶 + 1) ∈ ℕ)
4140nnred 10912 . . . . . . . . . . 11 (𝐶 ∈ ℕ → (𝐶 + 1) ∈ ℝ)
4237, 41ltnled 10063 . . . . . . . . . 10 (𝐶 ∈ ℕ → (1 < (𝐶 + 1) ↔ ¬ (𝐶 + 1) ≤ 1))
4339, 42mpbid 221 . . . . . . . . 9 (𝐶 ∈ ℕ → ¬ (𝐶 + 1) ≤ 1)
44 elfzle2 12216 . . . . . . . . 9 ((𝐶 + 1) ∈ (0...1) → (𝐶 + 1) ≤ 1)
4543, 44nsyl 134 . . . . . . . 8 (𝐶 ∈ ℕ → ¬ (𝐶 + 1) ∈ (0...1))
4645iffalsed 4047 . . . . . . 7 (𝐶 ∈ ℕ → if((𝐶 + 1) ∈ (0...1), ((!‘1) / ((!‘(1 − (𝐶 + 1))) · (!‘(𝐶 + 1)))), 0) = 0)
47 1nn0 11185 . . . . . . . 8 1 ∈ ℕ0
4840nnzd 11357 . . . . . . . 8 (𝐶 ∈ ℕ → (𝐶 + 1) ∈ ℤ)
49 bcval 12953 . . . . . . . 8 ((1 ∈ ℕ0 ∧ (𝐶 + 1) ∈ ℤ) → (1C(𝐶 + 1)) = if((𝐶 + 1) ∈ (0...1), ((!‘1) / ((!‘(1 − (𝐶 + 1))) · (!‘(𝐶 + 1)))), 0))
5047, 48, 49sylancr 694 . . . . . . 7 (𝐶 ∈ ℕ → (1C(𝐶 + 1)) = if((𝐶 + 1) ∈ (0...1), ((!‘1) / ((!‘(1 − (𝐶 + 1))) · (!‘(𝐶 + 1)))), 0))
51 bc0k 12960 . . . . . . 7 (𝐶 ∈ ℕ → (0C𝐶) = 0)
5246, 50, 513eqtr4rd 2655 . . . . . 6 (𝐶 ∈ ℕ → (0C𝐶) = (1C(𝐶 + 1)))
53 bcnn 12961 . . . . . . . . 9 (0 ∈ ℕ0 → (0C0) = 1)
5428, 53ax-mp 5 . . . . . . . 8 (0C0) = 1
55 bcnn 12961 . . . . . . . . 9 (1 ∈ ℕ0 → (1C1) = 1)
5647, 55ax-mp 5 . . . . . . . 8 (1C1) = 1
5754, 56eqtr4i 2635 . . . . . . 7 (0C0) = (1C1)
58 oveq2 6557 . . . . . . 7 (𝐶 = 0 → (0C𝐶) = (0C0))
59 oveq1 6556 . . . . . . . . 9 (𝐶 = 0 → (𝐶 + 1) = (0 + 1))
6059, 4syl6eq 2660 . . . . . . . 8 (𝐶 = 0 → (𝐶 + 1) = 1)
6160oveq2d 6565 . . . . . . 7 (𝐶 = 0 → (1C(𝐶 + 1)) = (1C1))
6257, 58, 613eqtr4a 2670 . . . . . 6 (𝐶 = 0 → (0C𝐶) = (1C(𝐶 + 1)))
6352, 62jaoi 393 . . . . 5 ((𝐶 ∈ ℕ ∨ 𝐶 = 0) → (0C𝐶) = (1C(𝐶 + 1)))
6436, 63sylbi 206 . . . 4 (𝐶 ∈ ℕ0 → (0C𝐶) = (1C(𝐶 + 1)))
6535, 64eqtrd 2644 . . 3 (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...0)(𝑘C𝐶) = (1C(𝐶 + 1)))
66 elnn0uz 11601 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ (ℤ‘0))
6766biimpi 205 . . . . . . . . 9 (𝑛 ∈ ℕ0𝑛 ∈ (ℤ‘0))
6867adantr 480 . . . . . . . 8 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → 𝑛 ∈ (ℤ‘0))
69 elfznn0 12302 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑛 + 1)) → 𝑘 ∈ ℕ0)
7069adantl 481 . . . . . . . . . 10 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑛 + 1))) → 𝑘 ∈ ℕ0)
71 simplr 788 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑛 + 1))) → 𝐶 ∈ ℕ0)
7271nn0zd 11356 . . . . . . . . . 10 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑛 + 1))) → 𝐶 ∈ ℤ)
73 bccl 12971 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐶 ∈ ℤ) → (𝑘C𝐶) ∈ ℕ0)
7470, 72, 73syl2anc 691 . . . . . . . . 9 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑛 + 1))) → (𝑘C𝐶) ∈ ℕ0)
7574nn0cnd 11230 . . . . . . . 8 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑛 + 1))) → (𝑘C𝐶) ∈ ℂ)
76 oveq1 6556 . . . . . . . 8 (𝑘 = (𝑛 + 1) → (𝑘C𝐶) = ((𝑛 + 1)C𝐶))
7768, 75, 76fsump1 14329 . . . . . . 7 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) + ((𝑛 + 1)C𝐶)))
7877adantr 480 . . . . . 6 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))) → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) + ((𝑛 + 1)C𝐶)))
79 id 22 . . . . . . 7 𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1)) → Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1)))
80 nn0cn 11179 . . . . . . . . . . 11 (𝐶 ∈ ℕ0𝐶 ∈ ℂ)
8180adantl 481 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → 𝐶 ∈ ℂ)
82 1cnd 9935 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → 1 ∈ ℂ)
8381, 82pncand 10272 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝐶 + 1) − 1) = 𝐶)
8483oveq2d 6565 . . . . . . . 8 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝑛 + 1)C((𝐶 + 1) − 1)) = ((𝑛 + 1)C𝐶))
8584eqcomd 2616 . . . . . . 7 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝑛 + 1)C𝐶) = ((𝑛 + 1)C((𝐶 + 1) − 1)))
8679, 85oveqan12rd 6569 . . . . . 6 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))) → (Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) + ((𝑛 + 1)C𝐶)) = (((𝑛 + 1)C(𝐶 + 1)) + ((𝑛 + 1)C((𝐶 + 1) − 1))))
87 peano2nn0 11210 . . . . . . . 8 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
88 peano2nn0 11210 . . . . . . . . 9 (𝐶 ∈ ℕ0 → (𝐶 + 1) ∈ ℕ0)
8988nn0zd 11356 . . . . . . . 8 (𝐶 ∈ ℕ0 → (𝐶 + 1) ∈ ℤ)
90 bcpasc 12970 . . . . . . . 8 (((𝑛 + 1) ∈ ℕ0 ∧ (𝐶 + 1) ∈ ℤ) → (((𝑛 + 1)C(𝐶 + 1)) + ((𝑛 + 1)C((𝐶 + 1) − 1))) = (((𝑛 + 1) + 1)C(𝐶 + 1)))
9187, 89, 90syl2an 493 . . . . . . 7 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → (((𝑛 + 1)C(𝐶 + 1)) + ((𝑛 + 1)C((𝐶 + 1) − 1))) = (((𝑛 + 1) + 1)C(𝐶 + 1)))
9291adantr 480 . . . . . 6 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))) → (((𝑛 + 1)C(𝐶 + 1)) + ((𝑛 + 1)C((𝐶 + 1) − 1))) = (((𝑛 + 1) + 1)C(𝐶 + 1)))
9378, 86, 923eqtrd 2648 . . . . 5 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))) → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (((𝑛 + 1) + 1)C(𝐶 + 1)))
9493exp31 628 . . . 4 (𝑛 ∈ ℕ0 → (𝐶 ∈ ℕ0 → (Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1)) → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (((𝑛 + 1) + 1)C(𝐶 + 1)))))
9594a2d 29 . . 3 (𝑛 ∈ ℕ0 → ((𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))) → (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (((𝑛 + 1) + 1)C(𝐶 + 1)))))
968, 14, 20, 26, 65, 95nn0ind 11348 . 2 (𝑁 ∈ ℕ0 → (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1))))
9796imp 444 1 ((𝑁 ∈ ℕ0𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  ifcif 4036   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  !cfa 12922  Ccbc 12951  Σcsu 14264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator