Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem7 Structured version   Visualization version   GIF version

Theorem emcllem7 24528
 Description: Lemma for emcl 24529 and harmonicbnd 24530. Derive bounds on γ as 𝐹(1) and 𝐺(1). (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 9-Apr-2016.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
emcl.3 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
emcl.4 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
Assertion
Ref Expression
emcllem7 (γ ∈ ((1 − (log‘2))[,]1) ∧ 𝐹:ℕ⟶(γ[,]1) ∧ 𝐺:ℕ⟶((1 − (log‘2))[,]γ))
Distinct variable groups:   𝑚,𝐻   𝑚,𝑛,𝑇
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)   𝐻(𝑛)

Proof of Theorem emcllem7
Dummy variables 𝑖 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11599 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 11285 . . . . 5 (⊤ → 1 ∈ ℤ)
3 emcl.1 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
4 emcl.2 . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
5 emcl.3 . . . . . . . 8 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
6 emcl.4 . . . . . . . 8 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
73, 4, 5, 6emcllem6 24527 . . . . . . 7 (𝐹 ⇝ γ ∧ 𝐺 ⇝ γ)
87simpri 477 . . . . . 6 𝐺 ⇝ γ
98a1i 11 . . . . 5 (⊤ → 𝐺 ⇝ γ)
103, 4emcllem1 24522 . . . . . . . 8 (𝐹:ℕ⟶ℝ ∧ 𝐺:ℕ⟶ℝ)
1110simpri 477 . . . . . . 7 𝐺:ℕ⟶ℝ
1211ffvelrni 6266 . . . . . 6 (𝑘 ∈ ℕ → (𝐺𝑘) ∈ ℝ)
1312adantl 481 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
141, 2, 9, 13climrecl 14162 . . . 4 (⊤ → γ ∈ ℝ)
15 1nn 10908 . . . . 5 1 ∈ ℕ
16 simpr 476 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
178a1i 11 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → 𝐺 ⇝ γ)
1812adantl 481 . . . . . . 7 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
193, 4emcllem2 24523 . . . . . . . . 9 (𝑘 ∈ ℕ → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1))))
2019simprd 478 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
2120adantl 481 . . . . . . 7 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
221, 16, 17, 18, 21climub 14240 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ≤ γ)
2322ralrimiva 2949 . . . . 5 (⊤ → ∀𝑖 ∈ ℕ (𝐺𝑖) ≤ γ)
24 fveq2 6103 . . . . . . . 8 (𝑖 = 1 → (𝐺𝑖) = (𝐺‘1))
25 oveq2 6557 . . . . . . . . . . . . 13 (𝑛 = 1 → (1...𝑛) = (1...1))
2625sumeq1d 14279 . . . . . . . . . . . 12 (𝑛 = 1 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...1)(1 / 𝑚))
27 1z 11284 . . . . . . . . . . . . 13 1 ∈ ℤ
28 ax-1cn 9873 . . . . . . . . . . . . 13 1 ∈ ℂ
29 oveq2 6557 . . . . . . . . . . . . . . 15 (𝑚 = 1 → (1 / 𝑚) = (1 / 1))
30 1div1e1 10596 . . . . . . . . . . . . . . 15 (1 / 1) = 1
3129, 30syl6eq 2660 . . . . . . . . . . . . . 14 (𝑚 = 1 → (1 / 𝑚) = 1)
3231fsum1 14320 . . . . . . . . . . . . 13 ((1 ∈ ℤ ∧ 1 ∈ ℂ) → Σ𝑚 ∈ (1...1)(1 / 𝑚) = 1)
3327, 28, 32mp2an 704 . . . . . . . . . . . 12 Σ𝑚 ∈ (1...1)(1 / 𝑚) = 1
3426, 33syl6eq 2660 . . . . . . . . . . 11 (𝑛 = 1 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = 1)
35 oveq1 6556 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝑛 + 1) = (1 + 1))
36 df-2 10956 . . . . . . . . . . . . 13 2 = (1 + 1)
3735, 36syl6eqr 2662 . . . . . . . . . . . 12 (𝑛 = 1 → (𝑛 + 1) = 2)
3837fveq2d 6107 . . . . . . . . . . 11 (𝑛 = 1 → (log‘(𝑛 + 1)) = (log‘2))
3934, 38oveq12d 6567 . . . . . . . . . 10 (𝑛 = 1 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (1 − (log‘2)))
40 1re 9918 . . . . . . . . . . . 12 1 ∈ ℝ
41 2rp 11713 . . . . . . . . . . . . 13 2 ∈ ℝ+
42 relogcl 24126 . . . . . . . . . . . . 13 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
4341, 42ax-mp 5 . . . . . . . . . . . 12 (log‘2) ∈ ℝ
4440, 43resubcli 10222 . . . . . . . . . . 11 (1 − (log‘2)) ∈ ℝ
4544elexi 3186 . . . . . . . . . 10 (1 − (log‘2)) ∈ V
4639, 4, 45fvmpt 6191 . . . . . . . . 9 (1 ∈ ℕ → (𝐺‘1) = (1 − (log‘2)))
4715, 46ax-mp 5 . . . . . . . 8 (𝐺‘1) = (1 − (log‘2))
4824, 47syl6eq 2660 . . . . . . 7 (𝑖 = 1 → (𝐺𝑖) = (1 − (log‘2)))
4948breq1d 4593 . . . . . 6 (𝑖 = 1 → ((𝐺𝑖) ≤ γ ↔ (1 − (log‘2)) ≤ γ))
5049rspcva 3280 . . . . 5 ((1 ∈ ℕ ∧ ∀𝑖 ∈ ℕ (𝐺𝑖) ≤ γ) → (1 − (log‘2)) ≤ γ)
5115, 23, 50sylancr 694 . . . 4 (⊤ → (1 − (log‘2)) ≤ γ)
52 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = 𝑖 → (𝐹𝑥) = (𝐹𝑖))
5352negeqd 10154 . . . . . . . . . . 11 (𝑥 = 𝑖 → -(𝐹𝑥) = -(𝐹𝑖))
54 eqid 2610 . . . . . . . . . . 11 (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) = (𝑥 ∈ ℕ ↦ -(𝐹𝑥))
55 negex 10158 . . . . . . . . . . 11 -(𝐹𝑖) ∈ V
5653, 54, 55fvmpt 6191 . . . . . . . . . 10 (𝑖 ∈ ℕ → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑖) = -(𝐹𝑖))
5756adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑖 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑖) = -(𝐹𝑖))
587simpli 473 . . . . . . . . . . . . 13 𝐹 ⇝ γ
5958a1i 11 . . . . . . . . . . . 12 (⊤ → 𝐹 ⇝ γ)
60 0cnd 9912 . . . . . . . . . . . 12 (⊤ → 0 ∈ ℂ)
61 nnex 10903 . . . . . . . . . . . . . 14 ℕ ∈ V
6261mptex 6390 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) ∈ V
6362a1i 11 . . . . . . . . . . . 12 (⊤ → (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) ∈ V)
6410simpli 473 . . . . . . . . . . . . . . 15 𝐹:ℕ⟶ℝ
6564ffvelrni 6266 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℝ)
6665adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
6766recnd 9947 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
68 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
6968negeqd 10154 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → -(𝐹𝑥) = -(𝐹𝑘))
70 negex 10158 . . . . . . . . . . . . . . 15 -(𝐹𝑘) ∈ V
7169, 54, 70fvmpt 6191 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) = -(𝐹𝑘))
7271adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) = -(𝐹𝑘))
73 df-neg 10148 . . . . . . . . . . . . 13 -(𝐹𝑘) = (0 − (𝐹𝑘))
7472, 73syl6eq 2660 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) = (0 − (𝐹𝑘)))
751, 2, 59, 60, 63, 67, 74climsubc2 14217 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) ⇝ (0 − γ))
7675adantr 480 . . . . . . . . . 10 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) ⇝ (0 − γ))
7766renegcld 10336 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → -(𝐹𝑘) ∈ ℝ)
7872, 77eqeltrd 2688 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) ∈ ℝ)
7978adantlr 747 . . . . . . . . . 10 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) ∈ ℝ)
8019simpld 474 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
8180adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
82 peano2nn 10909 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
8382adantl 481 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
8464ffvelrni 6266 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ ℝ)
8583, 84syl 17 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
8685, 66lenegd 10485 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ -(𝐹𝑘) ≤ -(𝐹‘(𝑘 + 1))))
8781, 86mpbid 221 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → -(𝐹𝑘) ≤ -(𝐹‘(𝑘 + 1)))
88 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
8988negeqd 10154 . . . . . . . . . . . . . 14 (𝑥 = (𝑘 + 1) → -(𝐹𝑥) = -(𝐹‘(𝑘 + 1)))
90 negex 10158 . . . . . . . . . . . . . 14 -(𝐹‘(𝑘 + 1)) ∈ V
9189, 54, 90fvmpt 6191 . . . . . . . . . . . . 13 ((𝑘 + 1) ∈ ℕ → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘(𝑘 + 1)) = -(𝐹‘(𝑘 + 1)))
9283, 91syl 17 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘(𝑘 + 1)) = -(𝐹‘(𝑘 + 1)))
9387, 72, 923brtr4d 4615 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) ≤ ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘(𝑘 + 1)))
9493adantlr 747 . . . . . . . . . 10 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) ≤ ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘(𝑘 + 1)))
951, 16, 76, 79, 94climub 14240 . . . . . . . . 9 ((⊤ ∧ 𝑖 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑖) ≤ (0 − γ))
9657, 95eqbrtrrd 4607 . . . . . . . 8 ((⊤ ∧ 𝑖 ∈ ℕ) → -(𝐹𝑖) ≤ (0 − γ))
97 df-neg 10148 . . . . . . . 8 -γ = (0 − γ)
9896, 97syl6breqr 4625 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → -(𝐹𝑖) ≤ -γ)
9914trud 1484 . . . . . . . 8 γ ∈ ℝ
10064ffvelrni 6266 . . . . . . . . 9 (𝑖 ∈ ℕ → (𝐹𝑖) ∈ ℝ)
101100adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ)
102 leneg 10410 . . . . . . . 8 ((γ ∈ ℝ ∧ (𝐹𝑖) ∈ ℝ) → (γ ≤ (𝐹𝑖) ↔ -(𝐹𝑖) ≤ -γ))
10399, 101, 102sylancr 694 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → (γ ≤ (𝐹𝑖) ↔ -(𝐹𝑖) ≤ -γ))
10498, 103mpbird 246 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → γ ≤ (𝐹𝑖))
105104ralrimiva 2949 . . . . 5 (⊤ → ∀𝑖 ∈ ℕ γ ≤ (𝐹𝑖))
106 fveq2 6103 . . . . . . . 8 (𝑖 = 1 → (𝐹𝑖) = (𝐹‘1))
107 fveq2 6103 . . . . . . . . . . . . 13 (𝑛 = 1 → (log‘𝑛) = (log‘1))
108 log1 24136 . . . . . . . . . . . . 13 (log‘1) = 0
109107, 108syl6eq 2660 . . . . . . . . . . . 12 (𝑛 = 1 → (log‘𝑛) = 0)
11034, 109oveq12d 6567 . . . . . . . . . . 11 (𝑛 = 1 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = (1 − 0))
111 1m0e1 11008 . . . . . . . . . . 11 (1 − 0) = 1
112110, 111syl6eq 2660 . . . . . . . . . 10 (𝑛 = 1 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = 1)
11340elexi 3186 . . . . . . . . . 10 1 ∈ V
114112, 3, 113fvmpt 6191 . . . . . . . . 9 (1 ∈ ℕ → (𝐹‘1) = 1)
11515, 114ax-mp 5 . . . . . . . 8 (𝐹‘1) = 1
116106, 115syl6eq 2660 . . . . . . 7 (𝑖 = 1 → (𝐹𝑖) = 1)
117116breq2d 4595 . . . . . 6 (𝑖 = 1 → (γ ≤ (𝐹𝑖) ↔ γ ≤ 1))
118117rspcva 3280 . . . . 5 ((1 ∈ ℕ ∧ ∀𝑖 ∈ ℕ γ ≤ (𝐹𝑖)) → γ ≤ 1)
11915, 105, 118sylancr 694 . . . 4 (⊤ → γ ≤ 1)
12044, 40elicc2i 12110 . . . 4 (γ ∈ ((1 − (log‘2))[,]1) ↔ (γ ∈ ℝ ∧ (1 − (log‘2)) ≤ γ ∧ γ ≤ 1))
12114, 51, 119, 120syl3anbrc 1239 . . 3 (⊤ → γ ∈ ((1 − (log‘2))[,]1))
122 ffn 5958 . . . . 5 (𝐹:ℕ⟶ℝ → 𝐹 Fn ℕ)
12364, 122mp1i 13 . . . 4 (⊤ → 𝐹 Fn ℕ)
12416, 1syl6eleq 2698 . . . . . . . 8 ((⊤ ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ (ℤ‘1))
125 elfznn 12241 . . . . . . . . . 10 (𝑘 ∈ (1...𝑖) → 𝑘 ∈ ℕ)
126125adantl 481 . . . . . . . . 9 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑖)) → 𝑘 ∈ ℕ)
127126, 65syl 17 . . . . . . . 8 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑖)) → (𝐹𝑘) ∈ ℝ)
128 elfznn 12241 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑖 − 1)) → 𝑘 ∈ ℕ)
129128adantl 481 . . . . . . . . 9 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑖 − 1))) → 𝑘 ∈ ℕ)
130129, 80syl 17 . . . . . . . 8 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑖 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
131124, 127, 130monoord2 12694 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ≤ (𝐹‘1))
132131, 115syl6breq 4624 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ≤ 1)
13399, 40elicc2i 12110 . . . . . 6 ((𝐹𝑖) ∈ (γ[,]1) ↔ ((𝐹𝑖) ∈ ℝ ∧ γ ≤ (𝐹𝑖) ∧ (𝐹𝑖) ≤ 1))
134101, 104, 132, 133syl3anbrc 1239 . . . . 5 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ (γ[,]1))
135134ralrimiva 2949 . . . 4 (⊤ → ∀𝑖 ∈ ℕ (𝐹𝑖) ∈ (γ[,]1))
136 ffnfv 6295 . . . 4 (𝐹:ℕ⟶(γ[,]1) ↔ (𝐹 Fn ℕ ∧ ∀𝑖 ∈ ℕ (𝐹𝑖) ∈ (γ[,]1)))
137123, 135, 136sylanbrc 695 . . 3 (⊤ → 𝐹:ℕ⟶(γ[,]1))
138 ffn 5958 . . . . 5 (𝐺:ℕ⟶ℝ → 𝐺 Fn ℕ)
13911, 138mp1i 13 . . . 4 (⊤ → 𝐺 Fn ℕ)
14011ffvelrni 6266 . . . . . . 7 (𝑖 ∈ ℕ → (𝐺𝑖) ∈ ℝ)
141140adantl 481 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ∈ ℝ)
142126, 12syl 17 . . . . . . . 8 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑖)) → (𝐺𝑘) ∈ ℝ)
143129, 20syl 17 . . . . . . . 8 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑖 − 1))) → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
144124, 142, 143monoord 12693 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐺‘1) ≤ (𝐺𝑖))
14547, 144syl5eqbrr 4619 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → (1 − (log‘2)) ≤ (𝐺𝑖))
14644, 99elicc2i 12110 . . . . . 6 ((𝐺𝑖) ∈ ((1 − (log‘2))[,]γ) ↔ ((𝐺𝑖) ∈ ℝ ∧ (1 − (log‘2)) ≤ (𝐺𝑖) ∧ (𝐺𝑖) ≤ γ))
147141, 145, 22, 146syl3anbrc 1239 . . . . 5 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ∈ ((1 − (log‘2))[,]γ))
148147ralrimiva 2949 . . . 4 (⊤ → ∀𝑖 ∈ ℕ (𝐺𝑖) ∈ ((1 − (log‘2))[,]γ))
149 ffnfv 6295 . . . 4 (𝐺:ℕ⟶((1 − (log‘2))[,]γ) ↔ (𝐺 Fn ℕ ∧ ∀𝑖 ∈ ℕ (𝐺𝑖) ∈ ((1 − (log‘2))[,]γ)))
150139, 148, 149sylanbrc 695 . . 3 (⊤ → 𝐺:ℕ⟶((1 − (log‘2))[,]γ))
151121, 137, 1503jca 1235 . 2 (⊤ → (γ ∈ ((1 − (log‘2))[,]1) ∧ 𝐹:ℕ⟶(γ[,]1) ∧ 𝐺:ℕ⟶((1 − (log‘2))[,]γ)))
152151trud 1484 1 (γ ∈ ((1 − (log‘2))[,]1) ∧ 𝐹:ℕ⟶(γ[,]1) ∧ 𝐺:ℕ⟶((1 − (log‘2))[,]γ))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475  ⊤wtru 1476   ∈ wcel 1977  ∀wral 2896  Vcvv 3173   class class class wbr 4583   ↦ cmpt 4643   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   ≤ cle 9954   − cmin 10145  -cneg 10146   / cdiv 10563  ℕcn 10897  2c2 10947  ℤcz 11254  ℤ≥cuz 11563  ℝ+crp 11708  [,]cicc 12049  ...cfz 12197   ⇝ cli 14063  Σcsu 14264  logclog 24105  γcem 24518 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-em 24519 This theorem is referenced by:  emcl  24529  harmonicbnd  24530  harmonicbnd2  24531
 Copyright terms: Public domain W3C validator