Step | Hyp | Ref
| Expression |
1 | | monoord2.1 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | monoord2.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) |
3 | 2 | renegcld 10336 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → -(𝐹‘𝑘) ∈ ℝ) |
4 | | eqid 2610 |
. . . . . 6
⊢ (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘)) = (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘)) |
5 | 3, 4 | fmptd 6292 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘)):(𝑀...𝑁)⟶ℝ) |
6 | 5 | ffvelrnda 6267 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑛) ∈ ℝ) |
7 | | monoord2.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
8 | 7 | ralrimiva 2949 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
9 | | oveq1 6556 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑛 → (𝑘 + 1) = (𝑛 + 1)) |
10 | 9 | fveq2d 6107 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1))) |
11 | | fveq2 6103 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
12 | 10, 11 | breq12d 4596 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ (𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛))) |
13 | 12 | cbvralv 3147 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛)) |
14 | 8, 13 | sylib 207 |
. . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛)) |
15 | 14 | r19.21bi 2916 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛)) |
16 | | fzp1elp1 12264 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (𝑀...(𝑁 − 1)) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1))) |
17 | 16 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1))) |
18 | | eluzelz 11573 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
19 | 1, 18 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℤ) |
20 | 19 | zcnd 11359 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℂ) |
21 | | ax-1cn 9873 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
22 | | npcan 10169 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) |
23 | 20, 21, 22 | sylancl 693 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
24 | 23 | oveq2d 6565 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁)) |
25 | 24 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁)) |
26 | 17, 25 | eleqtrd 2690 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
27 | 2 | ralrimiva 2949 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ) |
28 | 27 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ) |
29 | | fveq2 6103 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
30 | 29 | eleq1d 2672 |
. . . . . . . . 9
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ)) |
31 | 30 | rspcv 3278 |
. . . . . . . 8
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → (𝐹‘(𝑛 + 1)) ∈ ℝ)) |
32 | 26, 28, 31 | sylc 63 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ∈ ℝ) |
33 | | fzssp1 12255 |
. . . . . . . . . 10
⊢ (𝑀...(𝑁 − 1)) ⊆ (𝑀...((𝑁 − 1) + 1)) |
34 | 33, 24 | syl5sseq 3616 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁)) |
35 | 34 | sselda 3568 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (𝑀...𝑁)) |
36 | 11 | eleq1d 2672 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑛) ∈ ℝ)) |
37 | 36 | rspcv 3278 |
. . . . . . . 8
⊢ (𝑛 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → (𝐹‘𝑛) ∈ ℝ)) |
38 | 35, 28, 37 | sylc 63 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑛) ∈ ℝ) |
39 | 32, 38 | lenegd 10485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛) ↔ -(𝐹‘𝑛) ≤ -(𝐹‘(𝑛 + 1)))) |
40 | 15, 39 | mpbid 221 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → -(𝐹‘𝑛) ≤ -(𝐹‘(𝑛 + 1))) |
41 | 11 | negeqd 10154 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → -(𝐹‘𝑘) = -(𝐹‘𝑛)) |
42 | | negex 10158 |
. . . . . . 7
⊢ -(𝐹‘𝑛) ∈ V |
43 | 41, 4, 42 | fvmpt 6191 |
. . . . . 6
⊢ (𝑛 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑛) = -(𝐹‘𝑛)) |
44 | 35, 43 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑛) = -(𝐹‘𝑛)) |
45 | 29 | negeqd 10154 |
. . . . . . 7
⊢ (𝑘 = (𝑛 + 1) → -(𝐹‘𝑘) = -(𝐹‘(𝑛 + 1))) |
46 | | negex 10158 |
. . . . . . 7
⊢ -(𝐹‘(𝑛 + 1)) ∈ V |
47 | 45, 4, 46 | fvmpt 6191 |
. . . . . 6
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘(𝑛 + 1)) = -(𝐹‘(𝑛 + 1))) |
48 | 26, 47 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘(𝑛 + 1)) = -(𝐹‘(𝑛 + 1))) |
49 | 40, 44, 48 | 3brtr4d 4615 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑛) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘(𝑛 + 1))) |
50 | 1, 6, 49 | monoord 12693 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑀) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑁)) |
51 | | eluzfz1 12219 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
52 | 1, 51 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
53 | | fveq2 6103 |
. . . . . 6
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) |
54 | 53 | negeqd 10154 |
. . . . 5
⊢ (𝑘 = 𝑀 → -(𝐹‘𝑘) = -(𝐹‘𝑀)) |
55 | | negex 10158 |
. . . . 5
⊢ -(𝐹‘𝑀) ∈ V |
56 | 54, 4, 55 | fvmpt 6191 |
. . . 4
⊢ (𝑀 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑀) = -(𝐹‘𝑀)) |
57 | 52, 56 | syl 17 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑀) = -(𝐹‘𝑀)) |
58 | | eluzfz2 12220 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
59 | 1, 58 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
60 | | fveq2 6103 |
. . . . . 6
⊢ (𝑘 = 𝑁 → (𝐹‘𝑘) = (𝐹‘𝑁)) |
61 | 60 | negeqd 10154 |
. . . . 5
⊢ (𝑘 = 𝑁 → -(𝐹‘𝑘) = -(𝐹‘𝑁)) |
62 | | negex 10158 |
. . . . 5
⊢ -(𝐹‘𝑁) ∈ V |
63 | 61, 4, 62 | fvmpt 6191 |
. . . 4
⊢ (𝑁 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑁) = -(𝐹‘𝑁)) |
64 | 59, 63 | syl 17 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑁) = -(𝐹‘𝑁)) |
65 | 50, 57, 64 | 3brtr3d 4614 |
. 2
⊢ (𝜑 → -(𝐹‘𝑀) ≤ -(𝐹‘𝑁)) |
66 | 60 | eleq1d 2672 |
. . . . 5
⊢ (𝑘 = 𝑁 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑁) ∈ ℝ)) |
67 | 66 | rspcv 3278 |
. . . 4
⊢ (𝑁 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → (𝐹‘𝑁) ∈ ℝ)) |
68 | 59, 27, 67 | sylc 63 |
. . 3
⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ) |
69 | 53 | eleq1d 2672 |
. . . . 5
⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑀) ∈ ℝ)) |
70 | 69 | rspcv 3278 |
. . . 4
⊢ (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → (𝐹‘𝑀) ∈ ℝ)) |
71 | 52, 27, 70 | sylc 63 |
. . 3
⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ) |
72 | 68, 71 | lenegd 10485 |
. 2
⊢ (𝜑 → ((𝐹‘𝑁) ≤ (𝐹‘𝑀) ↔ -(𝐹‘𝑀) ≤ -(𝐹‘𝑁))) |
73 | 65, 72 | mpbird 246 |
1
⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝐹‘𝑀)) |