Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  odz2prm2pw Structured version   Visualization version   GIF version

Theorem odz2prm2pw 40013
Description: Any power of two is coprime to any prime not being two. (Contributed by AV, 25-Jul-2021.)
Assertion
Ref Expression
odz2prm2pw (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))

Proof of Theorem odz2prm2pw
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eldifi 3694 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
2 2nn 11062 . . . . . . . . 9 2 ∈ ℕ
32a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℕ)
4 2nn0 11186 . . . . . . . . . 10 2 ∈ ℕ0
54a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
6 peano2nn 10909 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
76nnnn0d 11228 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
85, 7nn0expcld 12893 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑(𝑁 + 1)) ∈ ℕ0)
93, 8nnexpcld 12892 . . . . . . 7 (𝑁 ∈ ℕ → (2↑(2↑(𝑁 + 1))) ∈ ℕ)
109nnzd 11357 . . . . . 6 (𝑁 ∈ ℕ → (2↑(2↑(𝑁 + 1))) ∈ ℤ)
11 modprm1div 15340 . . . . . 6 ((𝑃 ∈ ℙ ∧ (2↑(2↑(𝑁 + 1))) ∈ ℤ) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑(2↑(𝑁 + 1))) − 1)))
121, 10, 11syl2anr 494 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑(2↑(𝑁 + 1))) − 1)))
13 prmnn 15226 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
141, 13syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
1514adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℕ)
16 2z 11286 . . . . . . . 8 2 ∈ ℤ
1716a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 2 ∈ ℤ)
18 eldifsn 4260 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
19 simpr 476 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ≠ 2)
2019necomd 2837 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 2 ≠ 𝑃)
2118, 20sylbi 206 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 2 ≠ 𝑃)
22 2prm 15243 . . . . . . . . . 10 2 ∈ ℙ
23 prmrp 15262 . . . . . . . . . 10 ((2 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
2422, 1, 23sylancr 694 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
2521, 24mpbird 246 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (2 gcd 𝑃) = 1)
2625adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2 gcd 𝑃) = 1)
2715, 17, 263jca 1235 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1))
288adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑(𝑁 + 1)) ∈ ℕ0)
29 odzdvds 15338 . . . . . 6 (((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ (2↑(𝑁 + 1)) ∈ ℕ0) → (𝑃 ∥ ((2↑(2↑(𝑁 + 1))) − 1) ↔ ((od𝑃)‘2) ∥ (2↑(𝑁 + 1))))
3027, 28, 29syl2anc 691 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ ((2↑(2↑(𝑁 + 1))) − 1) ↔ ((od𝑃)‘2) ∥ (2↑(𝑁 + 1))))
3112, 30bitrd 267 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 ↔ ((od𝑃)‘2) ∥ (2↑(𝑁 + 1))))
32 nnnn0 11176 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
335, 32nn0expcld 12893 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ0)
343, 33nnexpcld 12892 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℕ)
3534nnzd 11357 . . . . . . . . 9 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℤ)
36 modprm1div 15340 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (2↑(2↑𝑁)) ∈ ℤ) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑(2↑𝑁)) − 1)))
371, 35, 36syl2anr 494 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑(2↑𝑁)) − 1)))
3833adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑𝑁) ∈ ℕ0)
39 odzdvds 15338 . . . . . . . . 9 (((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ (2↑𝑁) ∈ ℕ0) → (𝑃 ∥ ((2↑(2↑𝑁)) − 1) ↔ ((od𝑃)‘2) ∥ (2↑𝑁)))
4027, 38, 39syl2anc 691 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ ((2↑(2↑𝑁)) − 1) ↔ ((od𝑃)‘2) ∥ (2↑𝑁)))
4137, 40bitrd 267 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ ((od𝑃)‘2) ∥ (2↑𝑁)))
4241necon3abid 2818 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ↔ ¬ ((od𝑃)‘2) ∥ (2↑𝑁)))
43 odzcl 15336 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) → ((od𝑃)‘2) ∈ ℕ)
4427, 43syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((od𝑃)‘2) ∈ ℕ)
457adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑁 + 1) ∈ ℕ0)
46 dvdsprmpweqle 15428 . . . . . . . . 9 ((2 ∈ ℙ ∧ ((od𝑃)‘2) ∈ ℕ ∧ (𝑁 + 1) ∈ ℕ0) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → ∃𝑛 ∈ ℕ0 (𝑛 ≤ (𝑁 + 1) ∧ ((od𝑃)‘2) = (2↑𝑛))))
4722, 44, 45, 46mp3an2i 1421 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → ∃𝑛 ∈ ℕ0 (𝑛 ≤ (𝑁 + 1) ∧ ((od𝑃)‘2) = (2↑𝑛))))
48 breq1 4586 . . . . . . . . . . . . 13 (((od𝑃)‘2) = (2↑𝑛) → (((od𝑃)‘2) ∥ (2↑𝑁) ↔ (2↑𝑛) ∥ (2↑𝑁)))
4948adantl 481 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (((od𝑃)‘2) ∥ (2↑𝑁) ↔ (2↑𝑛) ∥ (2↑𝑁)))
5049notbid 307 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) ↔ ¬ (2↑𝑛) ∥ (2↑𝑁)))
51 simpr 476 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → ((od𝑃)‘2) = (2↑𝑛))
5251adantr 480 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) ∧ ¬ (2↑𝑛) ∥ (2↑𝑁)) → ((od𝑃)‘2) = (2↑𝑛))
53 nn0re 11178 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
546nnred 10912 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
5554adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑁 + 1) ∈ ℝ)
56 leloe 10003 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ) → (𝑛 ≤ (𝑁 + 1) ↔ (𝑛 < (𝑁 + 1) ∨ 𝑛 = (𝑁 + 1))))
5753, 55, 56syl2anr 494 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (𝑛 ≤ (𝑁 + 1) ↔ (𝑛 < (𝑁 + 1) ∨ 𝑛 = (𝑁 + 1))))
58 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
59 nn0z 11277 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
6059adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
6160adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → 𝑛 ∈ ℤ)
62 nnz 11276 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
6362adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑁 ∈ ℤ)
6463adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℤ)
6564adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → 𝑁 ∈ ℤ)
66 zleltp1 11305 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑛𝑁𝑛 < (𝑁 + 1)))
6759, 63, 66syl2anr 494 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (𝑛𝑁𝑛 < (𝑁 + 1)))
6867biimpar 501 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → 𝑛𝑁)
69 eluz2 11569 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ𝑛) ↔ (𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑛𝑁))
7061, 65, 68, 69syl3anbrc 1239 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → 𝑁 ∈ (ℤ𝑛))
71 dvdsexp 14887 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℤ ∧ 𝑛 ∈ ℕ0𝑁 ∈ (ℤ𝑛)) → (2↑𝑛) ∥ (2↑𝑁))
7216, 58, 70, 71mp3an2ani 1423 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → (2↑𝑛) ∥ (2↑𝑁))
7372pm2.24d 146 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1))))
7473expcom 450 . . . . . . . . . . . . . . . . . . 19 (𝑛 < (𝑁 + 1) → (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
75 oveq2 6557 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (𝑁 + 1) → (2↑𝑛) = (2↑(𝑁 + 1)))
76752a1d 26 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (𝑁 + 1) → (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
7774, 76jaoi 393 . . . . . . . . . . . . . . . . . 18 ((𝑛 < (𝑁 + 1) ∨ 𝑛 = (𝑁 + 1)) → (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
7877com12 32 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → ((𝑛 < (𝑁 + 1) ∨ 𝑛 = (𝑁 + 1)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
7957, 78sylbid 229 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (𝑛 ≤ (𝑁 + 1) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
8079imp 444 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1))))
8180adantr 480 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1))))
8281imp 444 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) ∧ ¬ (2↑𝑛) ∥ (2↑𝑁)) → (2↑𝑛) = (2↑(𝑁 + 1)))
8352, 82eqtrd 2644 . . . . . . . . . . . 12 ((((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) ∧ ¬ (2↑𝑛) ∥ (2↑𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
8483ex 449 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
8550, 84sylbid 229 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
8685expl 646 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (𝑁 + 1) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
8786rexlimdva 3013 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (∃𝑛 ∈ ℕ0 (𝑛 ≤ (𝑁 + 1) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
8847, 87syld 46 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
8988com23 84 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9042, 89sylbid 229 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9190com23 84 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9231, 91sylbid 229 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9392com23 84 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9493imp32 448 1 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897  cdif 3537  {csn 4125   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563   mod cmo 12530  cexp 12722  cdvds 14821   gcd cgcd 15054  cprime 15223  odcodz 15306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224  df-odz 15308  df-phi 15309  df-pc 15380
This theorem is referenced by:  fmtnoprmfac1lem  40014
  Copyright terms: Public domain W3C validator