Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclimlem2 Structured version   Visualization version   GIF version

Theorem faclimlem2 30883
 Description: Lemma for faclim 30885. Show a limit for the inductive step. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
faclimlem2 (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) ⇝ (𝑀 + 1))
Distinct variable group:   𝑛,𝑀

Proof of Theorem faclimlem2
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 faclimlem1 30882 . 2 (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) = (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))))
2 nnuz 11599 . . . 4 ℕ = (ℤ‘1)
3 1zzd 11285 . . . 4 (𝑀 ∈ ℕ0 → 1 ∈ ℤ)
4 1cnd 9935 . . . . 5 (𝑀 ∈ ℕ0 → 1 ∈ ℂ)
5 nn0p1nn 11209 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
65nnzd 11357 . . . . 5 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℤ)
7 nnex 10903 . . . . . . 7 ℕ ∈ V
87mptex 6390 . . . . . 6 (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) ∈ V
98a1i 11 . . . . 5 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) ∈ V)
10 oveq1 6556 . . . . . . . 8 (𝑚 = 𝑘 → (𝑚 + 1) = (𝑘 + 1))
11 oveq1 6556 . . . . . . . 8 (𝑚 = 𝑘 → (𝑚 + (𝑀 + 1)) = (𝑘 + (𝑀 + 1)))
1210, 11oveq12d 6567 . . . . . . 7 (𝑚 = 𝑘 → ((𝑚 + 1) / (𝑚 + (𝑀 + 1))) = ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))
13 eqid 2610 . . . . . . 7 (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) = (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))
14 ovex 6577 . . . . . . 7 ((𝑘 + 1) / (𝑘 + (𝑀 + 1))) ∈ V
1512, 13, 14fvmpt 6191 . . . . . 6 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))
1615adantl 481 . . . . 5 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))
172, 3, 4, 6, 9, 16divcnvlin 30871 . . . 4 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) ⇝ 1)
185nncnd 10913 . . . 4 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℂ)
197mptex 6390 . . . . 5 (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) ∈ V
2019a1i 11 . . . 4 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) ∈ V)
21 peano2nn 10909 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
2221adantl 481 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
2322nnred 10912 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℝ)
24 simpr 476 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
255adantr 480 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → (𝑀 + 1) ∈ ℕ)
2624, 25nnaddcld 10944 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → (𝑚 + (𝑀 + 1)) ∈ ℕ)
2723, 26nndivred 10946 . . . . . . 7 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → ((𝑚 + 1) / (𝑚 + (𝑀 + 1))) ∈ ℝ)
2827recnd 9947 . . . . . 6 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → ((𝑚 + 1) / (𝑚 + (𝑀 + 1))) ∈ ℂ)
2928, 13fmptd 6292 . . . . 5 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))):ℕ⟶ℂ)
3029ffvelrnda 6267 . . . 4 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘) ∈ ℂ)
3112oveq2d 6565 . . . . . . 7 (𝑚 = 𝑘 → ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))))
32 eqid 2610 . . . . . . 7 (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) = (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))))
33 ovex 6577 . . . . . . 7 ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))) ∈ V
3431, 32, 33fvmpt 6191 . . . . . 6 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))))‘𝑘) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))))
3515oveq2d 6565 . . . . . 6 (𝑘 ∈ ℕ → ((𝑀 + 1) · ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘)) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))))
3634, 35eqtr4d 2647 . . . . 5 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))))‘𝑘) = ((𝑀 + 1) · ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘)))
3736adantl 481 . . . 4 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))))‘𝑘) = ((𝑀 + 1) · ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘)))
382, 3, 17, 18, 20, 30, 37climmulc2 14215 . . 3 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) ⇝ ((𝑀 + 1) · 1))
3918mulid1d 9936 . . 3 (𝑀 ∈ ℕ0 → ((𝑀 + 1) · 1) = (𝑀 + 1))
4038, 39breqtrd 4609 . 2 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) ⇝ (𝑀 + 1))
411, 40eqbrtrd 4605 1 (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) ⇝ (𝑀 + 1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  1c1 9816   + caddc 9818   · cmul 9820   / cdiv 10563  ℕcn 10897  ℕ0cn0 11169  seqcseq 12663   ⇝ cli 14063 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-seq 12664  df-exp 12723  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068 This theorem is referenced by:  faclim  30885
 Copyright terms: Public domain W3C validator