Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclim Structured version   Visualization version   GIF version

Theorem faclim 30885
Description: An infinite product expression relating to factorials. Originally due to Euler. (Contributed by Scott Fenton, 22-Nov-2017.)
Hypothesis
Ref Expression
faclim.1 𝐹 = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))
Assertion
Ref Expression
faclim (𝐴 ∈ ℕ0 → seq1( · , 𝐹) ⇝ (!‘𝐴))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem faclim
Dummy variables 𝑎 𝑏 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 faclim.1 . . 3 𝐹 = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))
2 seqeq3 12668 . . 3 (𝐹 = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛)))) → seq1( · , 𝐹) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))))
31, 2ax-mp 5 . 2 seq1( · , 𝐹) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛)))))
4 oveq2 6557 . . . . . . 7 (𝑎 = 0 → ((1 + (1 / 𝑛))↑𝑎) = ((1 + (1 / 𝑛))↑0))
5 oveq1 6556 . . . . . . . 8 (𝑎 = 0 → (𝑎 / 𝑛) = (0 / 𝑛))
65oveq2d 6565 . . . . . . 7 (𝑎 = 0 → (1 + (𝑎 / 𝑛)) = (1 + (0 / 𝑛)))
74, 6oveq12d 6567 . . . . . 6 (𝑎 = 0 → (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))) = (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))
87mpteq2dv 4673 . . . . 5 (𝑎 = 0 → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛)))))
98seqeq3d 12671 . . . 4 (𝑎 = 0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))))
10 fveq2 6103 . . . . 5 (𝑎 = 0 → (!‘𝑎) = (!‘0))
11 fac0 12925 . . . . 5 (!‘0) = 1
1210, 11syl6eq 2660 . . . 4 (𝑎 = 0 → (!‘𝑎) = 1)
139, 12breq12d 4596 . . 3 (𝑎 = 0 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) ⇝ (!‘𝑎) ↔ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))) ⇝ 1))
14 oveq2 6557 . . . . . . 7 (𝑎 = 𝑚 → ((1 + (1 / 𝑛))↑𝑎) = ((1 + (1 / 𝑛))↑𝑚))
15 oveq1 6556 . . . . . . . 8 (𝑎 = 𝑚 → (𝑎 / 𝑛) = (𝑚 / 𝑛))
1615oveq2d 6565 . . . . . . 7 (𝑎 = 𝑚 → (1 + (𝑎 / 𝑛)) = (1 + (𝑚 / 𝑛)))
1714, 16oveq12d 6567 . . . . . 6 (𝑎 = 𝑚 → (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))) = (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))
1817mpteq2dv 4673 . . . . 5 (𝑎 = 𝑚 → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))
1918seqeq3d 12671 . . . 4 (𝑎 = 𝑚 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))))
20 fveq2 6103 . . . 4 (𝑎 = 𝑚 → (!‘𝑎) = (!‘𝑚))
2119, 20breq12d 4596 . . 3 (𝑎 = 𝑚 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) ⇝ (!‘𝑎) ↔ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)))
22 oveq2 6557 . . . . . . 7 (𝑎 = (𝑚 + 1) → ((1 + (1 / 𝑛))↑𝑎) = ((1 + (1 / 𝑛))↑(𝑚 + 1)))
23 oveq1 6556 . . . . . . . 8 (𝑎 = (𝑚 + 1) → (𝑎 / 𝑛) = ((𝑚 + 1) / 𝑛))
2423oveq2d 6565 . . . . . . 7 (𝑎 = (𝑚 + 1) → (1 + (𝑎 / 𝑛)) = (1 + ((𝑚 + 1) / 𝑛)))
2522, 24oveq12d 6567 . . . . . 6 (𝑎 = (𝑚 + 1) → (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))) = (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))
2625mpteq2dv 4673 . . . . 5 (𝑎 = (𝑚 + 1) → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))))
2726seqeq3d 12671 . . . 4 (𝑎 = (𝑚 + 1) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))))
28 fveq2 6103 . . . 4 (𝑎 = (𝑚 + 1) → (!‘𝑎) = (!‘(𝑚 + 1)))
2927, 28breq12d 4596 . . 3 (𝑎 = (𝑚 + 1) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) ⇝ (!‘𝑎) ↔ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (!‘(𝑚 + 1))))
30 oveq2 6557 . . . . . . 7 (𝑎 = 𝐴 → ((1 + (1 / 𝑛))↑𝑎) = ((1 + (1 / 𝑛))↑𝐴))
31 oveq1 6556 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎 / 𝑛) = (𝐴 / 𝑛))
3231oveq2d 6565 . . . . . . 7 (𝑎 = 𝐴 → (1 + (𝑎 / 𝑛)) = (1 + (𝐴 / 𝑛)))
3330, 32oveq12d 6567 . . . . . 6 (𝑎 = 𝐴 → (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))) = (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))
3433mpteq2dv 4673 . . . . 5 (𝑎 = 𝐴 → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛)))))
3534seqeq3d 12671 . . . 4 (𝑎 = 𝐴 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))))
36 fveq2 6103 . . . 4 (𝑎 = 𝐴 → (!‘𝑎) = (!‘𝐴))
3735, 36breq12d 4596 . . 3 (𝑎 = 𝐴 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) ⇝ (!‘𝑎) ↔ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))) ⇝ (!‘𝐴)))
38 1red 9934 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 ∈ ℝ)
39 nnrecre 10934 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
4038, 39readdcld 9948 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 + (1 / 𝑛)) ∈ ℝ)
4140recnd 9947 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 + (1 / 𝑛)) ∈ ℂ)
4241exp0d 12864 . . . . . . . . 9 (𝑛 ∈ ℕ → ((1 + (1 / 𝑛))↑0) = 1)
43 nncn 10905 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
44 nnne0 10930 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
4543, 44div0d 10679 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (0 / 𝑛) = 0)
4645oveq2d 6565 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 + (0 / 𝑛)) = (1 + 0))
47 1p0e1 11010 . . . . . . . . . 10 (1 + 0) = 1
4846, 47syl6eq 2660 . . . . . . . . 9 (𝑛 ∈ ℕ → (1 + (0 / 𝑛)) = 1)
4942, 48oveq12d 6567 . . . . . . . 8 (𝑛 ∈ ℕ → (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))) = (1 / 1))
50 1div1e1 10596 . . . . . . . 8 (1 / 1) = 1
5149, 50syl6eq 2660 . . . . . . 7 (𝑛 ∈ ℕ → (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))) = 1)
5251mpteq2ia 4668 . . . . . 6 (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛)))) = (𝑛 ∈ ℕ ↦ 1)
53 fconstmpt 5085 . . . . . 6 (ℕ × {1}) = (𝑛 ∈ ℕ ↦ 1)
5452, 53eqtr4i 2635 . . . . 5 (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛)))) = (ℕ × {1})
55 seqeq3 12668 . . . . 5 ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛)))) = (ℕ × {1}) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))) = seq1( · , (ℕ × {1})))
5654, 55ax-mp 5 . . . 4 seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))) = seq1( · , (ℕ × {1}))
57 nnuz 11599 . . . . . 6 ℕ = (ℤ‘1)
58 1zzd 11285 . . . . . 6 (⊤ → 1 ∈ ℤ)
5957, 58climprod1 14534 . . . . 5 (⊤ → seq1( · , (ℕ × {1})) ⇝ 1)
6059trud 1484 . . . 4 seq1( · , (ℕ × {1})) ⇝ 1
6156, 60eqbrtri 4604 . . 3 seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))) ⇝ 1
62 1zzd 11285 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → 1 ∈ ℤ)
63 simpr 476 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚))
64 seqex 12665 . . . . . . 7 seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ∈ V
6564a1i 11 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ∈ V)
66 faclimlem2 30883 . . . . . . 7 (𝑚 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (𝑚 + 1))
6766adantr 480 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (𝑚 + 1))
68 elnnuz 11600 . . . . . . . . . 10 (𝑎 ∈ ℕ ↔ 𝑎 ∈ (ℤ‘1))
6968biimpi 205 . . . . . . . . 9 (𝑎 ∈ ℕ → 𝑎 ∈ (ℤ‘1))
7069adantl 481 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑎 ∈ ℕ) → 𝑎 ∈ (ℤ‘1))
71 1rp 11712 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
7271a1i 11 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 1 ∈ ℝ+)
73 nnrp 11718 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
7473rpreccld 11758 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
7574adantl 481 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
7672, 75rpaddcld 11763 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (1 + (1 / 𝑛)) ∈ ℝ+)
77 nn0z 11277 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0𝑚 ∈ ℤ)
7877adantr 480 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 𝑚 ∈ ℤ)
7976, 78rpexpcld 12894 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((1 + (1 / 𝑛))↑𝑚) ∈ ℝ+)
80 1cnd 9935 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 1 ∈ ℂ)
81 nn0nndivcl 11239 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑚 / 𝑛) ∈ ℝ)
8281recnd 9947 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑚 / 𝑛) ∈ ℂ)
8380, 82addcomd 10117 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (1 + (𝑚 / 𝑛)) = ((𝑚 / 𝑛) + 1))
84 nn0ge0div 11322 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 0 ≤ (𝑚 / 𝑛))
8581, 84ge0p1rpd 11778 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑚 / 𝑛) + 1) ∈ ℝ+)
8683, 85eqeltrd 2688 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (1 + (𝑚 / 𝑛)) ∈ ℝ+)
8779, 86rpdivcld 11765 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))) ∈ ℝ+)
8887rpcnd 11750 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))) ∈ ℂ)
89 eqid 2610 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))
9088, 89fmptd 6292 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))):ℕ⟶ℂ)
91 elfznn 12241 . . . . . . . . . 10 (𝑏 ∈ (1...𝑎) → 𝑏 ∈ ℕ)
92 ffvelrn 6265 . . . . . . . . . 10 (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))):ℕ⟶ℂ ∧ 𝑏 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) ∈ ℂ)
9390, 91, 92syl2an 493 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) ∈ ℂ)
9493adantlr 747 . . . . . . . 8 (((𝑚 ∈ ℕ0𝑎 ∈ ℕ) ∧ 𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) ∈ ℂ)
95 mulcl 9899 . . . . . . . . 9 ((𝑏 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑏 · 𝑥) ∈ ℂ)
9695adantl 481 . . . . . . . 8 (((𝑚 ∈ ℕ0𝑎 ∈ ℕ) ∧ (𝑏 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑏 · 𝑥) ∈ ℂ)
9770, 94, 96seqcl 12683 . . . . . . 7 ((𝑚 ∈ ℕ0𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))‘𝑎) ∈ ℂ)
9897adantlr 747 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) ∧ 𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))‘𝑎) ∈ ℂ)
9986, 76rpmulcld 11764 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) ∈ ℝ+)
100 nn0p1nn 11209 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ)
101100nnrpd 11746 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℝ+)
102 rpdivcl 11732 . . . . . . . . . . . . . . 15 (((𝑚 + 1) ∈ ℝ+𝑛 ∈ ℝ+) → ((𝑚 + 1) / 𝑛) ∈ ℝ+)
103101, 73, 102syl2an 493 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑚 + 1) / 𝑛) ∈ ℝ+)
10472, 103rpaddcld 11763 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (1 + ((𝑚 + 1) / 𝑛)) ∈ ℝ+)
10599, 104rpdivcld 11765 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))) ∈ ℝ+)
106105rpcnd 11750 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))) ∈ ℂ)
107 eqid 2610 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))
108106, 107fmptd 6292 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))):ℕ⟶ℂ)
109 ffvelrn 6265 . . . . . . . . . 10 (((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))):ℕ⟶ℂ ∧ 𝑏 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) ∈ ℂ)
110108, 91, 109syl2an 493 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) ∈ ℂ)
111110adantlr 747 . . . . . . . 8 (((𝑚 ∈ ℕ0𝑎 ∈ ℕ) ∧ 𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) ∈ ℂ)
11270, 111, 96seqcl 12683 . . . . . . 7 ((𝑚 ∈ ℕ0𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎) ∈ ℂ)
113112adantlr 747 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) ∧ 𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎) ∈ ℂ)
114 faclimlem3 30884 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑏 ∈ ℕ) → (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))) = ((((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))) · (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏)))))
115 oveq2 6557 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑏 → (1 / 𝑛) = (1 / 𝑏))
116115oveq2d 6565 . . . . . . . . . . . . . . 15 (𝑛 = 𝑏 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑏)))
117116oveq1d 6564 . . . . . . . . . . . . . 14 (𝑛 = 𝑏 → ((1 + (1 / 𝑛))↑(𝑚 + 1)) = ((1 + (1 / 𝑏))↑(𝑚 + 1)))
118 oveq2 6557 . . . . . . . . . . . . . . 15 (𝑛 = 𝑏 → ((𝑚 + 1) / 𝑛) = ((𝑚 + 1) / 𝑏))
119118oveq2d 6565 . . . . . . . . . . . . . 14 (𝑛 = 𝑏 → (1 + ((𝑚 + 1) / 𝑛)) = (1 + ((𝑚 + 1) / 𝑏)))
120117, 119oveq12d 6567 . . . . . . . . . . . . 13 (𝑛 = 𝑏 → (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))) = (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))))
121 eqid 2610 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))
122 ovex 6577 . . . . . . . . . . . . 13 (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))) ∈ V
123120, 121, 122fvmpt 6191 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))))
124123adantl 481 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑏 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))))
125116oveq1d 6564 . . . . . . . . . . . . . . 15 (𝑛 = 𝑏 → ((1 + (1 / 𝑛))↑𝑚) = ((1 + (1 / 𝑏))↑𝑚))
126 oveq2 6557 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑏 → (𝑚 / 𝑛) = (𝑚 / 𝑏))
127126oveq2d 6565 . . . . . . . . . . . . . . 15 (𝑛 = 𝑏 → (1 + (𝑚 / 𝑛)) = (1 + (𝑚 / 𝑏)))
128125, 127oveq12d 6567 . . . . . . . . . . . . . 14 (𝑛 = 𝑏 → (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))) = (((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))))
129 ovex 6577 . . . . . . . . . . . . . 14 (((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))) ∈ V
130128, 89, 129fvmpt 6191 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) = (((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))))
131127, 116oveq12d 6567 . . . . . . . . . . . . . . 15 (𝑛 = 𝑏 → ((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) = ((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))))
132131, 119oveq12d 6567 . . . . . . . . . . . . . 14 (𝑛 = 𝑏 → (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))) = (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏))))
133 ovex 6577 . . . . . . . . . . . . . 14 (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏))) ∈ V
134132, 107, 133fvmpt 6191 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏))))
135130, 134oveq12d 6567 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)) = ((((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))) · (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏)))))
136135adantl 481 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑏 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)) = ((((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))) · (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏)))))
137114, 124, 1363eqtr4d 2654 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑏 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)))
13891, 137sylan2 490 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)))
139138adantlr 747 . . . . . . . 8 (((𝑚 ∈ ℕ0𝑎 ∈ ℕ) ∧ 𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)))
14070, 94, 111, 139prodfmul 14461 . . . . . . 7 ((𝑚 ∈ ℕ0𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎) = ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))‘𝑎) · (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎)))
141140adantlr 747 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) ∧ 𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎) = ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))‘𝑎) · (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎)))
14257, 62, 63, 65, 67, 98, 113, 141climmul 14211 . . . . 5 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ ((!‘𝑚) · (𝑚 + 1)))
143 facp1 12927 . . . . . 6 (𝑚 ∈ ℕ0 → (!‘(𝑚 + 1)) = ((!‘𝑚) · (𝑚 + 1)))
144143adantr 480 . . . . 5 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → (!‘(𝑚 + 1)) = ((!‘𝑚) · (𝑚 + 1)))
145142, 144breqtrrd 4611 . . . 4 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (!‘(𝑚 + 1)))
146145ex 449 . . 3 (𝑚 ∈ ℕ0 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (!‘(𝑚 + 1))))
14713, 21, 29, 37, 61, 146nn0ind 11348 . 2 (𝐴 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))) ⇝ (!‘𝐴))
1483, 147syl5eqbr 4618 1 (𝐴 ∈ ℕ0 → seq1( · , 𝐹) ⇝ (!‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wtru 1476  wcel 1977  Vcvv 3173  {csn 4125   class class class wbr 4583  cmpt 4643   × cxp 5036  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   / cdiv 10563  cn 10897  0cn0 11169  cz 11254  cuz 11563  +crp 11708  ...cfz 12197  seqcseq 12663  cexp 12722  !cfa 12922  cli 14063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068
This theorem is referenced by:  iprodfac  30886
  Copyright terms: Public domain W3C validator