Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrpsscn | Structured version Visualization version GIF version |
Description: The positive reals are a subset of the complex numbers. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
rrpsscn | ⊢ ℝ+ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcn 11717 | . 2 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ) | |
2 | 1 | ssriv 3572 | 1 ⊢ ℝ+ ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3540 ℂcc 9813 ℝ+crp 11708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-resscn 9872 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rab 2905 df-in 3547 df-ss 3554 df-rp 11709 |
This theorem is referenced by: stirlinglem8 38974 |
Copyright terms: Public domain | W3C validator |