Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrpsscn Structured version   Unicode version

Theorem rrpsscn 36963
Description: The positive reals are a subset of the complex numbers. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
rrpsscn  |-  RR+  C_  CC

Proof of Theorem rrpsscn
StepHypRef Expression
1 rpcn 11275 . 2  |-  ( x  e.  RR+  ->  x  e.  CC )
21ssriv 3448 1  |-  RR+  C_  CC
Colors of variables: wff setvar class
Syntax hints:    C_ wss 3416   CCcc 9522   RR+crp 11267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-resscn 9581
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-rab 2765  df-in 3423  df-ss 3430  df-rp 11268
This theorem is referenced by:  stirlinglem8  37244
  Copyright terms: Public domain W3C validator