Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrpsscn Structured version   Unicode version

Theorem rrpsscn 31095
Description: The positive reals are a subset of the complex numbers. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
rrpsscn  |-  RR+  C_  CC

Proof of Theorem rrpsscn
StepHypRef Expression
1 rpcn 11219 . 2  |-  ( x  e.  RR+  ->  x  e.  CC )
21ssriv 3503 1  |-  RR+  C_  CC
Colors of variables: wff setvar class
Syntax hints:    C_ wss 3471   CCcc 9481   RR+crp 11211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-resscn 9540
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-rab 2818  df-in 3478  df-ss 3485  df-rp 11212
This theorem is referenced by:  stirlinglem8  31338
  Copyright terms: Public domain W3C validator