Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0digval Structured version   Visualization version   GIF version

Theorem nn0digval 42192
Description: The 𝐾 th digit of a nonnegative real number 𝑅 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.)
Assertion
Ref Expression
nn0digval ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘(𝑅 / (𝐵𝐾))) mod 𝐵))

Proof of Theorem nn0digval
StepHypRef Expression
1 nn0z 11277 . . 3 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
2 digval 42190 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵))
31, 2syl3an2 1352 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵))
4 nncn 10905 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
54anim1i 590 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0))
6 expneg 12730 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐵↑-𝐾) = (1 / (𝐵𝐾)))
75, 6syl 17 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝐵↑-𝐾) = (1 / (𝐵𝐾)))
873adant3 1074 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐵↑-𝐾) = (1 / (𝐵𝐾)))
98oveq1d 6564 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → ((𝐵↑-𝐾) · 𝑅) = ((1 / (𝐵𝐾)) · 𝑅))
10 elrege0 12149 . . . . . . . 8 (𝑅 ∈ (0[,)+∞) ↔ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
11 recn 9905 . . . . . . . . 9 (𝑅 ∈ ℝ → 𝑅 ∈ ℂ)
1211adantr 480 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑅 ∈ ℂ)
1310, 12sylbi 206 . . . . . . 7 (𝑅 ∈ (0[,)+∞) → 𝑅 ∈ ℂ)
14133ad2ant3 1077 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → 𝑅 ∈ ℂ)
1553adant3 1074 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0))
16 expcl 12740 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℂ)
1715, 16syl 17 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐵𝐾) ∈ ℂ)
1843ad2ant1 1075 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → 𝐵 ∈ ℂ)
19 nnne0 10930 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
20193ad2ant1 1075 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → 𝐵 ≠ 0)
2113ad2ant2 1076 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → 𝐾 ∈ ℤ)
2218, 20, 21expne0d 12876 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐵𝐾) ≠ 0)
2314, 17, 22divrec2d 10684 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝑅 / (𝐵𝐾)) = ((1 / (𝐵𝐾)) · 𝑅))
249, 23eqtr4d 2647 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → ((𝐵↑-𝐾) · 𝑅) = (𝑅 / (𝐵𝐾)))
2524fveq2d 6107 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (⌊‘((𝐵↑-𝐾) · 𝑅)) = (⌊‘(𝑅 / (𝐵𝐾))))
2625oveq1d 6564 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵) = ((⌊‘(𝑅 / (𝐵𝐾))) mod 𝐵))
273, 26eqtrd 2644 1 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘(𝑅 / (𝐵𝐾))) mod 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820  +∞cpnf 9950  cle 9954  -cneg 10146   / cdiv 10563  cn 10897  0cn0 11169  cz 11254  [,)cico 12048  cfl 12453   mod cmo 12530  cexp 12722  digitcdig 42187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-ico 12052  df-seq 12664  df-exp 12723  df-dig 42188
This theorem is referenced by:  dignnld  42195  dig2nn1st  42197  digexp  42199  0dig2nn0e  42204  0dig2nn0o  42205  dig2bits  42206  dignn0ehalf  42209  dignn0flhalf  42210
  Copyright terms: Public domain W3C validator